
A Comparative Study of EfficientNetB0 and Vision Transformer (ViT-B16) Architectures 
for Brain Tumor Classification Using MRI Scans 

Om Sahu 
 

Abstract 
 

Accurate detection and classification of brain tumors from MRI scans is critical for effective 
clinical diagnosis and treatment planning. While Convolutional Neural Networks (CNNs) like 
EfficientNetB0 have been widely used for medical image analysis due to their strong feature 
extraction capabilities, their performance is often hindered by limited spatial context awareness. 
Vision Transformers (ViTs), by contrast, leverage self-attention mechanisms to capture global 
contextual relationships, potentially overcoming these limitations. This study presents a rigorous 
comparative analysis of EfficientNetB0 and ViT-B16 architectures on the Brain Tumor MRI 
Dataset, which includes four classes: Glioma, Meningioma, Pituitary Tumor, and No Tumor. Both 
models were trained under identical preprocessing, augmentation, and hyperparameter settings 
using Kaggle’s cloud infrastructure. Evaluation based on accuracy, precision, recall, F1-score, 
AUC-ROC, and interpretability (via Grad-CAM and Attention Maps) revealed stark differences. 
EfficientNetB0 exhibited severe overfitting, achieving high training but poor test performance 
(30.89% accuracy), misclassifying most tumor types. In contrast, ViT-B16 achieved superior 
generalization with a test accuracy of 71.62% and balanced performance across tumor 
categories. Interpretability analyses confirmed ViT-B16's ability to localize tumors more 
effectively. These results highlight the promise of transformer-based architectures for robust and 
clinically viable brain tumor classification. 
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1. Introduction 

Brain tumors represent a significant medical 
challenge due to their life‐threatening nature 
and the complexity of treatment 
requirements. Accurate and timely detection 
of brain tumors is essential for improving 
patient outcomes. Magnetic resonance 
imaging (MRI) is the diagnostic tool of 
choice because of its superior soft tissue 
contrast, which allows detailed visualization 
of tumor structures. However, manual 
interpretation of MRI scans by radiologists is 
both time‐intensive and subject to 
interobserver variability, making the case for 
automated diagnostic methods that can 
provide reliable and consistent assessments 
(Balaji et al., 2022). 

Recent advances in deep learning have 
opened new avenues for medical image 
analysis, particularly in tumor classification 
and segmentation. Convolutional Neural 
Networks (CNNs) have gained prominence 
in this field due to their ability to extract 
hierarchical spatial features from complex 
images (Filatov & Yar, 2022). EfficientNetB0, 
a state‐of‐the‐art CNN architecture, has 
demonstrated robust performance in image 
classification tasks, including brain tumor 
detection, by effectively utilizing transfer 
learning from large-scale datasets (M MM et 
al., 2024). Despite these successes, CNNs 
may struggle to capture long-range spatial 
dependencies inherent in MRI data, which 
are critical for distinguishing intricate tumor 
characteristics. 

In response to these limitations, Vision 
Transformers (ViTs) have emerged as a 
promising alternative for medical imaging 
applications. ViTs employ self-attention 
mechanisms to analyze images as 
sequences of patches, enabling them to 

capture global contextual relationships more 
effectively than traditional CNNs. This 
architectural shift allows ViTs to potentially 
overcome the spatial limitations of 
convolutional approaches, though they also 
demand higher computational resources and 
larger training datasets (Liu et al., 2023). 
The trade-offs between these two 
architectures are central to the research 
presented here. 

This study compares the performance of 
EfficientNetB0 (CNN) and ViT-B16 (Vision 
Transformer) in the classification of brain 
tumors using MRI scans. The research 
utilizes the Brain Tumor MRI Dataset from 
Kaggle (Nickparvar, 2021), which includes 
images categorized into Glioma, 
Meningioma, Pituitary Tumor, and No 
Tumor. Both models were trained under 
identical conditions using Kaggle’s 
cloud-based GPUs, with standardized 
preprocessing steps and consistent 
hyperparameter settings. Model 
performance was rigorously evaluated using 
metrics such as classification accuracy, 
precision, recall, F1-score, and ROC curves, 
along with interpretability techniques 
including Grad-CAM for CNNs and Attention 
Maps for ViTs (Minaee et al., 2022). 

The research addresses several critical 
questions: Which architecture—CNN or 
ViT—is better suited for brain tumor 
classification in MRI scans? How do the 
models compare in terms of interpretability 
and the precision of tumor localization? 
What are the computational implications of 
employing Vision Transformers in clinical 
settings? By answering these questions, this 
study aims to bridge the gap between 
advances in algorithms and their use in 
clinical settings, offering important insights 
into how AI-assisted diagnostic tools can be 
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effectively used in everyday radiology 
practice. 

2. Literature Review 

2.1 Traditional CNN Approaches 

Convolutional Neural Networks (CNNs) have 
become a cornerstone in medical imaging 
analysis, particularly for brain tumor 
detection and classification. Balaji et al. 
(2022) demonstrated that deep 
convolutional neural networks can effectively 
extract hierarchical spatial features from 
complex medical images, providing reliable 
diagnostic support for radiologists. Their 
work highlighted how CNNs could reduce 
the time-intensive nature of manual MRI 
interpretation while maintaining consistent 
assessment quality. 

EfficientNet architectures, particularly 
EfficientNetB0, have shown promising 
results in medical image classification tasks. 
M MM et al. (2024) explored an 
XAI-enhanced EfficientNetB0 framework 
specifically designed for brain tumor 
detection, emphasizing how transfer 
learning from large-scale datasets 
significantly improves model performance 
even with limited medical imaging data. 
Their research demonstrated that CNNs 
could achieve high accuracy in 
distinguishing between different tumor types 
when properly optimized. 

Filatov and Yar (2022) further established 
the effectiveness of pre-trained 
convolutional neural networks for brain 
tumor diagnosis. Their approach leveraged 
existing CNN architectures and fine-tuned 
them for the specific requirements of 
neurological imaging, showing that 
knowledge transfer from general image 
classification tasks could be successfully 
adapted to specialized medical applications. 

2.2 Emergence of Vision Transformers 

Despite the success of CNNs, their inherent 
architectural limitations in capturing 
long-range spatial dependencies have led 
researchers to explore alternative 
approaches. Vision Transformers (ViTs) 
represent a paradigm shift in computer 
vision, applying self-attention mechanisms 
to process images as sequences of patches 
rather than through hierarchical 
convolutional operations. 

Liu et al. (2023) investigated the application 
of Vision Transformers for glioblastoma 
tumor segmentation, demonstrating that 
ViTs could more effectively capture global 
contextual relationships in MRI data. Their 
ensemble approach showed particular 
promise in delineating complex tumor 
boundaries, outperforming traditional 
CNN-based methods in segmentation 
accuracy. This research highlighted the 
transformer architecture's ability to 
understand intricate spatial relationships 
across the entire image, which is crucial for 
accurate tumor characterization. 

Minaee et al. (2022) conducted a 
comprehensive study on the classification of 
brain tumors using Vision Transformer 
ensembles. Their findings revealed that 
transformer-based models achieved 
superior performance compared to 
conventional CNN architectures, particularly 
when dealing with subtle differences 
between tumor types. The self-attention 
mechanism allowed ViTs to focus on the 
most discriminative regions within MRI 
scans, improving diagnostic precision. 

2.3 Challenges in Medical Imaging 
Applications 

While both CNNs and ViTs have 
demonstrated effectiveness, several 
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challenges persist in their application to 
medical imaging. Dataset limitations 
represent a significant hurdle, as noted 
across multiple studies. The Brain Tumor 
MRI Dataset from Kaggle (Nickparvar, 
2021), while widely used, contains a 
relatively small number of samples 
compared to general image classification 
datasets. This limitation often leads to 
overfitting, particularly in complex models 
with numerous parameters. 

Class imbalance is another common issue in 
medical datasets, where certain conditions 
may be underrepresented. Researchers 
have addressed this challenge through 
various data augmentation techniques, 
including rotation, zooming, and horizontal 
flipping, to artificially expand the training 
dataset and improve model generalization. 

Computational requirements present 
additional obstacles, especially for Vision 
Transformers, which typically demand more 
processing power and memory than their 
CNN counterparts. This consideration 
becomes particularly relevant in clinical 
settings, where resource constraints may 
influence model selection and deployment 
strategies. 

2.4 Interpretability in Deep Learning 
Models 

As deep learning models increasingly 
influence medical decision-making, 
interpretability has emerged as a critical 
research focus. Grad-CAM visualization 
techniques have been extensively used to 
understand CNN decision processes, 
allowing researchers to verify whether 
models are focusing on clinically relevant 
image regions or merely exploiting dataset 
biases. 

For Vision Transformers, attention maps 
serve a similar purpose, providing insights 
into how these models distribute their focus 
across different image patches. Minaee et 
al. (2022) emphasized the importance of 
these visualization techniques in building 
trust among clinicians and ensuring that 
model predictions align with medical 
knowledge. 

3. Materials and Methods 

3.1 Dataset and Preprocessing 

The dataset used for this study is Brain 
Tumor MRI Dataset, publicly available on 
Kaggle (Nickparvar, 2021). It consists of MRI 
scans categorized into four classes: Glioma, 
Meningioma, Pituitary Tumor, and No 
Tumor. These images vary in resolution, 
contrast, and noise levels, reflecting 
real-world clinical conditions. To ensure 
uniform input representation, a standardized 
preprocessing pipeline was applied to all 
images before training. 

All images were resized to 224×224 pixels 
to maintain consistency between CNN and 
ViT architectures. Normalization was 
performed by rescaling pixel values to the 
range [0,1], which facilitates stable training. 
Since medical imaging datasets often suffer 
from class imbalance and limited sample 
size, data augmentation techniques were 
implemented to enhance generalization. 
These included rotation (±15°), zoom (10%), 
horizontal flipping, and width-height shifts 
(10%), ensuring that model performance 
was not biased toward any specific tumor 
category. 

For fair evaluation, the dataset was divided 
into training and testing sets in an 80:20 
ratio, maintaining proportional class 
representation. The ImageDataGenerator 
function from TensorFlow was used for both 
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real-time augmentation and efficient batch 
loading. The batch size was set to 32, 
balancing computational efficiency with 
convergence stability. 

Table 1 presents the preprocessing steps 
applied to MRI images before model 
training. 

 

Table 1. Dataset Preprocessing Steps 

Step Method Used 

Image Resizing 224×224 pixels 

Normalization Pixel values 
rescaled to [0,1] 

Data 
Augmentation 

Rotation (±15°), 
Zoom (10%), 
Horizontal Flip, 
Shift (10%) 

Dataset Splitting 80% Training, 
20% Testing 

Batch Size 32 

 

The dataset used in this study presents 
inherent variability due to differences in 
scanning protocols and patient conditions. 
Standardizing preprocessing steps ensures 
that input images remain consistent across 
training, allowing for a fair comparison 
between the EfficientNetB0 and ViT-B16 
models. 

3.2 Model Architectures and 
Implementation 

This study employs two deep learning 
architectures for brain tumor classification: 
EfficientNetB0, a convolutional neural 

network (CNN), and ViT-B16, a vision 
transformer. Both models leverage transfer 
learning by using pretrained weights from 
ImageNet, ensuring effective feature 
extraction. While CNNs operate through 
hierarchical feature learning using 
convolutional filters, vision transformers 
process images as sequences of patches, 
capturing long-range dependencies through 
self-attention mechanisms. 

EfficientNetB0 was chosen due to its 
computational efficiency and strong 
performance in medical imaging 
applications. The model applies compound 
scaling to balance depth, width, and 
resolution, optimizing accuracy while 
maintaining low computational cost. The 
final layers were modified to include a fully 
connected layer with 512 neurons, followed 
by a softmax output layer for multi-class 
classification. 

ViT-B16 was selected as a 
transformer-based alternative to assess its 
effectiveness in tumor classification. Unlike 
CNNs, ViTs split input images into 
non-overlapping 16×16 patches, which are 
then linearly embedded and passed through 
multiple self-attention layers. This 
architecture enables the model to learn 
global spatial relationships without relying on 
convolutional operations. The output 
classification layer mirrors that of the 
EfficientNetB0 model, ensuring a fair 
comparison. 

Both models were trained using Kaggle’s 
cloud-based GPUs, leveraging TensorFlow 
and Keras frameworks. Training involved 
categorical cross entropy as the loss 
function and the Adam optimizer, with a 
learning rate scheduling mechanism. The 
input images were processed in batches of 
32 to balance training efficiency and 
memory constraints. 
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Table 2 presents the architectural 
differences between EfficientNetB0 and 

ViT-B16, highlighting key structural 
components. 

 

Table 2. Structural Comparison of CNN and Vision Transformer Models 

Model Feature 
Extraction 

Attention 
Mechanism 

Input 
Processing 

Output 
Layers 

EfficientNetB0 Convolutional 
Filters 

None Hierarchical Fully 
Connected + 
Softmax 

ViT-B16 Linear Patch 
Embedding 

Multi-Head 
Self-Attention 

Image 
Patches 
(16×16) 

Fully 
Connected + 
Softmax 

 

3.3 Model Training and Optimization 

Both EfficientNetB0 and ViT-B16 were 
trained under identical conditions to 
ensure a fair comparison. The training 
was conducted using Kaggle’s 
cloud-based GPUs with TensorFlow and 
Keras frameworks. The dataset was 
preprocessed as described in the 
previous section, and the models were 
trained using categorical cross entropy 
as the loss function, which is suitable for 
multi-class classification tasks. The 
Adam optimizer was used with an initial 
learning rate of 0.001, and learning rate 
reduction was applied based on 
validation loss stagnation. 

To prevent overfitting, several 
regularization techniques were 
implemented. Dropout was applied in 
the fully connected layers, with a 
probability of 0.5, ensuring that neurons 
were randomly deactivated during 
training to enhance generalization. Early 
stopping was employed with a patience 

level of five epochs, meaning that if the 
validation loss did not improve for five 
consecutive epochs, training was halted. 
This approach prevented unnecessary 
computation while ensuring that the 
models did not memorize the training 
data. 

ReduceLROnPlateau was also used to 
dynamically adjust the learning rate 
when validation performance plateaued. 
If the validation loss failed to decrease 
for three consecutive epochs, the 
learning rate was reduced by a factor of 
0.2. This allowed the models to fine-tune 
their learning process in later stages 
without abrupt changes. 

Both models were trained for five 
epochs with a batch size of 32. The 
choice of a smaller number of epochs 
was influenced by computational 
limitations and the risk of overfitting 
given the dataset size. Data 
augmentation was used to introduce 
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variations in training samples, further 
improving model robustness. 

Table 3 summarizes the training 
parameters and optimization techniques 
used for EfficientNetB0 and ViT-B16. 

 

Table 3. Training Parameters and Optimization Techniques 

Parameter EfficientNetB0 ViT-B16 

Loss Function Categorical Crossentropy Categorical Crossentropy 

Optimizer Adam Adam 

Initial Learning Rate 0.001 0.001 

Batch Size 32 32 

Number of Epochs 5 5 

Dropout Rate 0.5 0.5 

Learning Rate Reduction ReduceLROnPlateau 
(Factor: 0.2, Patience: 3) 

ReduceLROnPlateau 
(Factor: 0.2, Patience: 3) 

Early Stopping Yes (Patience: 5) Yes (Patience: 5) 

 

3.4 Model Evaluation Metrics 

To assess the performance of 
EfficientNetB0 and ViT-B16 in brain 
tumor classification, several evaluation 
metrics were used. These included 
accuracy, precision, recall, F1-score, 
and the area under the receiver 
operating characteristic curve 
(AUC-ROC). Additionally, model 
interpretability techniques such as 
Grad-CAM and attention maps were 
employed to analyze the regions 
influencing predictions. 

Classification Metrics 

Accuracy measures the proportion of 
correctly classified instances among all 
samples. It is defined as: 

 eq(1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where TP (True Positives) and TN (True 
Negatives) represent correctly classified 
tumor and non-tumor cases, while FP 
(False Positives) and FN (False 
Negatives) denote misclassified 
instances. 
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Precision quantifies the correctness of 
positive predictions and is given by: 

 eq(2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall, also known as sensitivity, 
measures the model’s ability to detect 
true positive cases: 

 eq(3) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

The F1-score provides a balanced 
measure between precision and recall, 
particularly useful in datasets with class 
imbalances: 

 eq(4) 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

AUC-ROC evaluates the trade-off 
between sensitivity and specificity 
across different threshold values. The 
area under the curve (AUC) is computed 
based on the integral of the ROC curve. 

 eq(5) 𝐴𝑈𝐶 =
0

1

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅

where TPR (true positive rate) is defined 
as  

 eq(6) 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

and FPR (false positive rate) is defined 
as  

 eq(7) 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

This integral represents the probability 
that a randomly chosen positive sample 
ranks higher than a randomly chosen 
negative sample. 

Understanding model predictions is 
essential in medical applications. 

Grad-CAM (Gradient-weighted Class 
Activation Mapping) was used to 
visualize important regions in MRI 
images that influenced CNN predictions, 
while attention maps were analyzed to 
determine how the vision transformer 
distributed its focus across image 
patches. These interpretability methods 
ensure that the models rely on 
tumor-relevant regions rather than 
background noise. 

4. Findings and Discussion 

4.1 Training Performance 

The training process involved 4,569 MRI 
images allocated for training, covering 
four tumor classes: Glioma (1,326), 
Meningioma (1,320), Pituitary Tumor 
(1,345), and No Tumor (578). The same 
dataset, with identical augmentations 
and preprocessing, was fed into both 
models to ensure a fair comparison of 
their learning capabilities. 

Training and Validation Accuracy 

EfficientNetB0 achieved a final training 
accuracy of 97.3%, while its validation 
accuracy dropped significantly to 
30.89%, indicating severe overfitting. In 
contrast, ViT-B16 exhibited a more 
stable performance, achieving 74.7% 
training accuracy and 71.62% validation 
accuracy, suggesting better 
generalization. 

Training and Validation Loss 

The training loss of EfficientNetB0 
steadily decreased to 0.0918, while its 
validation loss increased to 6.9831, 
confirming that the model memorized 
the training data but failed to generalize 
well. ViT-B16, however, exhibited a 
training loss of 0.6612 and a validation 
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loss of 0.7654, showing a closer 
alignment between the two and 

indicating improved generalization 
compared to CNN. 

 

Figure 1. Loss and accuracy curves for EfficientNetB0. 

 

Figure 2. Loss and accuracy curves for ViT-B16. 

Epoch-wise Performance 
Comparison A detailed breakdown of performance 

across epochs is provided in Table 4, 
showing training and validation accuracy 
for both models. 
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Table 4. Epoch-wise Training and Validation Accuracy 

Epoch EfficientNetB0 
(Train Accuracy) 

EfficientNetB0 
(Validation 
Accuracy) 

ViT-B16 (Train 
Accuracy) 

ViT-B16 
(Validation 
Accuracy) 

1 88.53% 30.89% 33.79% 48.28% 

2 94.57% 30.89% 61.71% 51.49% 

3 95.55% 30.21% 70.03% 71.32% 

4 96.90% 30.89% 72.25% 73.15% 

5 97.30% 30.89% 74.70% 71.62% 

 

EfficientNetB0’s consistent validation 
accuracy of 30.89% suggests it failed to 
learn meaningful generalizable features. 
In contrast, ViT-B16 steadily improved, 
peaking at 73.15% validation accuracy 
before slightly declining to 71.62%, 
indicating better real-world performance. 

Observations 

1. CNN (EfficientNetB0) displayed 
significant overfitting, failing to 
generalize beyond training data. 

2. ViT-B16 demonstrated a closer 
alignment between training and 
validation accuracy, suggesting 
superior feature learning and 
adaptability. 

3. CNN’s validation loss increased 
sharply, while ViT’s validation 
loss remained relatively stable, 
confirming the overfitting issue in 
CNN. 

4.2 Classification Accuracy and 
Performance Metrics 

After training, both EfficientNetB0 and 
ViT-B16 were evaluated on the test set, 
comprising 1,311 MRI images 
distributed across four classes: Glioma, 
Meningioma, Pituitary Tumor, and No 
Tumor. The classification performance 
was assessed using accuracy, precision, 
recall, F1-score, and confusion 
matrices. 

EfficientNetB0 achieved an overall test 
accuracy of 30.89%, significantly lower 
than its training accuracy of 97.3%, 
confirming severe overfitting. The 
ViT-B16 model, however, attained an 
overall test accuracy of 71.62%, closely 
matching its training accuracy of 74.7%, 
indicating better generalization. 

Confusion Matrices 

To further analyze model 
misclassifications, confusion matrices 
were computed for both models. 
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Figure 3. Confusion matrix for EfficientNetB0. 

 

Figure 4. Confusion matrix for ViT-B16. 

The confusion matrix for EfficientNetB0 
reveals a major flaw in its predictions: 
the model classified all test samples as 
No Tumor, leading to an accuracy of 
30.89% (which corresponds to the 
proportion of No Tumor cases in the 
dataset). Glioma, Meningioma, and 
Pituitary Tumor cases were entirely 
misclassified, showing that the model 
learned no meaningful features to 
differentiate between tumor types. 

ViT-B16, on the other hand, 
demonstrated balanced classification 
across all categories, correctly 
identifying a substantial number of 
Glioma, Meningioma, and Pituitary 
Tumor cases while achieving high 
accuracy in detecting No Tumor cases. 

Precision, Recall, and F1-Score 

Table 5 summarizes the precision, 
recall, and F1-score for each tumor 
class. 

 

Table 5. Classification Metrics for Each Model 

Class CNN 
Precision 

CNN 
Recall 

CNN 
F1-Score 

ViT 
Precision 

ViT 
Recall 

ViT 
F1-Score 

Glioma 0.00 0.00 0.00 0.75 0.58 0.65 
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Meningio
ma 

0.00 0.00 0.00 0.52 0.44 0.47 

No Tumor 0.31 1.00 0.47 0.77 0.87 0.82 

Pituitary 0.00 0.00 0.00 0.77 0.94 0.84 

 

1. EfficientNetB0’s precision and recall scores are zero for three out of four classes, 
meaning it was unable to correctly classify Glioma, Meningioma, or Pituitary Tumor 
cases. 

2. ViT-B16 achieved an F1-score above 0.80 for No Tumor and Pituitary Tumor, 
demonstrating high classification reliability for these categories. 

3. ViT-B16 underperformed in Meningioma cases, likely due to feature similarities with other 
tumor types. 

ROC-AUC Analysis 

Receiver Operating Characteristic (ROC) curves were plotted to evaluate the trade-off between 
sensitivity and specificity for each model.  

 

 

Figure 5. ROC curves for each class (EfficientNetB0). 
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Figure 6. ROC curves for each class (ViT-B16). 

 

The AUC (area under the curve) scores confirm that ViT-B16 is a superior classifier, achieving 
AUC values above 0.90 for Glioma Tumor, No Tumor and Pituitary Tumor categories, while 
EfficientNetB0 fails to distinguish between tumor types effectively. 

Precision-Recall Curve Analysis 

To assess model performance in handling class imbalances, precision-recall curves were 
generated. 
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Figure 7. Precision-recall curves for each class (EfficientNetB0). 

 

Figure 8. Precision-recall curves for each class (ViT-B16) 

ViT-B16 maintains high precision for No 
Tumor and Pituitary Tumor cases, 
reinforcing its strong predictive 
capabilities. In contrast, EfficientNetB0’s 
precision remains consistently low, 
confirming that the model lacks 
discriminative power. 

Observations 

1. ViT-B16 outperformed 
EfficientNetB0 across all key 
metrics, confirming that 
self-attention mechanisms 
improve brain tumor 
classification. 

2. EfficientNetB0 suffered from 
extreme overfitting, leading to a 
complete failure in distinguishing 
tumor types, as it misclassified all 
test samples as No Tumor. 

3. ROC-AUC and precision-recall 
curves validate that ViT-B16 
excels in No Tumor and Pituitary 
Tumor detection, but struggles 
slightly with Meningioma cases. 

4.3 Model Interpretability Analysis 

Understanding how deep learning 
models make predictions is essential in 
medical imaging applications, where 
explainability is critical for clinical 
adoption. To assess model 
decision-making, Grad-CAM 
(Gradient-weighted Class Activation 
Mapping) was used for EfficientNetB0, 
while Attention Maps were generated for 
ViT-B16. These techniques highlight the 
regions in MRI scans that most 
influenced each model’s predictions. 

Grad-CAM for EfficientNetB0 

Grad-CAM was applied to visualize the 
CNN’s feature activations. Since 
EfficientNetB0 misclassified all tumor 
cases as No Tumor, Grad-CAM 
heatmaps help reveal whether the 
model focused on tumor-affected 
regions or background artifacts. 
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Figure 9. Grad-CAM visualizations for 
EfficientNetB0 predictions. 

The Grad-CAM results show that 
EfficientNetB0 failed to focus on tumor 
regions, instead highlighting random 
areas of the brain in most cases. This 
confirms that the model did not learn 
discriminative features necessary for 
tumor classification. Even in correctly 
identified No Tumor cases, activations 
were not well-localized, further 
supporting the conclusion that 
EfficientNetB0 overfitted to dataset 
biases rather than learning meaningful 
tumor representations. 

Attention Maps for ViT-B16 

Vision Transformers operate 
fundamentally differently from CNNs, 
utilizing self-attention mechanisms to 
process image patches. Attention Maps 
were generated to analyze how ViT-B16 
distributed its focus across different 
regions of MRI scans. 

 

Figure 10. Attention maps for ViT-B16 
predictions. 

Unlike EfficientNetB0, ViT-B16 
successfully attended to tumor regions, 
particularly in correctly classified Glioma 
and Pituitary Tumor cases. The model 
distributed its attention across the entire 
tumor area rather than focusing on 
irrelevant regions, explaining why 
ViT-B16 performed significantly better 
than EfficientNetB0. 

Comparison and Key Observations 

1. EfficientNetB0 failed to focus on 
tumor regions, suggesting it 
relied on dataset biases rather 
than meaningful medical 
features. 

2. ViT-B16 demonstrated strong 
tumor localization, confirming its 
superior feature extraction and 
decision-making capabilities. 

3. Grad-CAM revealed scattered 
activations in CNN predictions, 
while Attention Maps showed 
structured and tumor-specific 
activations for ViT-B16. 

15 



These findings further validate the 
practical advantage of vision 
transformers over convolutional 
networks for brain tumor classification. 

5. Conclusion 

This study compared the performance of 
EfficientNetB0 (CNN) and ViT-B16 
(Vision Transformer) for brain tumor 
classification using MRI scans. The 
models were trained and evaluated on 
the Brain Tumor MRI Dataset from 
Kaggle, which includes four classes: 
Glioma, Meningioma, Pituitary Tumor, 
and No Tumor. The experimental results 
demonstrated that ViT-B16 significantly 
outperformed EfficientNetB0, achieving 
a test accuracy of 71.62% compared to 
30.89% for EfficientNetB0. 

Key Findings 

1. EfficientNetB0 suffered from 
extreme overfitting. While it 
reached 97.3% training accuracy, 
its validation and test accuracy 
remained at 30.89%, indicating 
that the model failed to 
generalize beyond training data. 
The confusion matrix revealed 
that EfficientNetB0 classified all 
test samples as No Tumor, 
making it unusable for medical 
applications. 

2. ViT-B16 demonstrated strong 
generalization. It achieved a 
training accuracy of 74.7% and a 
test accuracy of 71.62%, closely 
matching across datasets. The 
confusion matrix and 
precision-recall curves confirmed 
that ViT-B16 was effective at 
distinguishing different tumor 
types, particularly Pituitary 
Tumors and No Tumor cases. 

3. Interpretability analysis revealed 
fundamental differences between 
the models. Grad-CAM 
visualizations showed that 
EfficientNetB0 failed to focus on 
relevant tumor regions, 
suggesting that it relied on 
dataset biases rather than 
meaningful medical features. In 
contrast, ViT-B16’s Attention 
Maps demonstrated precise 
localization of tumors, reinforcing 
the superiority of transformers for 
medical imaging tasks. 

4. ROC-AUC and precision-recall 
curves confirmed ViT-B16’s 
diagnostic reliability. The 
transformer model consistently 
achieved AUC scores above 0.90 
for Glioma Tumor, No Tumor and 
Pituitary Tumor categories, 
whereas EfficientNetB0 failed to 
differentiate between tumor 
types. 

Limitations and Future Directions 

Despite the success of ViT-B16 in this 
study, certain challenges remain: 

1. Higher computational 
requirements for ViTs. 
Transformers demand 
significantly more memory and 
processing power compared to 
CNNs. Optimizing lightweight 
transformer variants or distillation 
techniques may improve 
deployment feasibility. 

2. Limited dataset size. The Brain 
Tumor MRI Dataset used in this 
study, while widely adopted, 
remains relatively small. Training 
on larger and more diverse 
datasets could enhance model 
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robustness and reduce 
generalization errors. 

3. Multimodal learning. Future 
research could integrate patient 
metadata, clinical reports, and 
additional MRI sequences to 
improve classification accuracy 
beyond image-based analysis 
alone. 

This research highlights the growing 
potential of Vision Transformers in 
medical imaging. The experimental 
results confirm that self-attention 

mechanisms outperform convolutional 
networks in brain tumor detection. 
ViT-B16’s ability to focus on relevant 
tumor regions, achieve balanced 
classification, and generalize across 
datasets makes it a strong candidate for 
real-world clinical applications. Future 
studies should focus on improving 
transformer efficiency and integrating 
additional diagnostic data to further 
enhance AI-driven medical imaging 
solutions. 
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