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Abstract 

This research paper provides an analysis of nuclear weapon usage in the present-day world 
through the lens of game theory. Despite the existence of nuclear weapons as the most 
formidable and threatening form of warfare, this paper explores the reasons behind the 
non-usage of nuclear weapons despite multiple armed conflicts since its only recorded use in 
human history in 1945. Through an examination of historical events, such as the Cuban Missile 
Crisis, this paper illustrates how nuclear cooperation has been established to prevent damaging 
nuclear conflict. Furthermore, this paper generalizes this analysis to the present-day global 
landscape, highlighting why nuclear weapons exist primarily as deterrents that act as signals 
rather than active tools of warfare and destruction. This study is grounded in mathematical 
game-theoretic concepts, although non-mathematical and intuitive explanations of such 
concepts also exist to provide the reader with a holistic understanding of basic game theory. 

Introduction to Nuclear Weapons 

Dubbed “the most dangerous weapons on Earth,” nuclear weapons have the scary potential to 
kill billions and significantly jeopardize the lives of future humans. Yet, despite their frightening 
potential, nuclear weapons exist mainly as a threat of warfare that bolsters both the military 
strength and credibility of a nuclear-armed nation. Spurred on by numerous developments in 
atomic theory in the scientific world, the development of nuclear weapons rapidly accelerated 
throughout the mid-20th century due to World War II. The first nation to achieve a breakthrough 
was the United States: on July 16, 1945, the world’s first atomic bomb detonated in the desert of 
New Mexico, marking the success of America’s initiative to create a nuclear weapon and forever 
changing the course of humanity.  

It was at this time that J. Robert Oppenheimer, widely regarded as the father of the atomic 
bomb, famously uttered the words, “Now I am become death, the destroyer of worlds.” A mere 
three weeks later, American President Harry Truman authorized the use of atomic bombs to be 
dropped on the Japanese cities of Hiroshima and Nagasaki. It is estimated that around 200,000 
civilians were killed as a result of the bombings; six days later, Japan unconditionally 
surrendered to end World War II. Ultimately, the discovery of atomic bombs not only brought 
World War II to an abrupt and fiery end but also ushered humanity into a new era of warfare that 
forever changed the nature of global conflict. In the years to follow, the quest for global nuclear 
domination led to the Cold War between the United States and the former Soviet Union, marked 
by an arms race between the two nations.  

Today, nine nations around the world have either shown or are believed to have access to 
nuclear weapons: the United States, Russia, China, France, the United Kingdom, India, 
Pakistan, North Korea, and Israel. Israel is widely believed to have nuclear weapons, but 
maintains a policy of strategic opacity. Several other countries formerly possessed nuclear 
weapons but have since given them up, including South Africa (who voluntarily relinquished 
their nuclear arsenal) and the former Soviet states of Kazakhstan, Belarus, and Ukraine (whose 
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nuclear weapons were moved to Russia). Of these countries with nuclear capabilities, the 
United States and Russia account for a whopping 90% of the world’s nuclear weapons. 
However, despite the wide existence of nuclear weapons, the last time they were used to cause 
human casualties intentionally was in fact during World War II, almost eight decades ago. 
Furthermore, the global nuclear stockpile has decreased from 60,000 during the peak of the 
Cold War to only 13,000 in the present day. This begs the question of exactly why nuclear 
weapon usage and stockpile quantity have significantly decreased despite it being the most 
powerful weapon known to mankind. However, there is an intuitive and sophisticated framework 
that helps to explain the status quo of present-day nuclear weapon usage: game theory. 

Introduction to Game Theory 

Largely credited to the works of mathematician John von Neumann and economist Oskar 
Morgenstern in the 1940s, game theory is the study of mathematical models that analyze 
strategic interactions between individuals or entities. Combining the fields of mathematics, 
economics, philosophy, and psychology, game theory can be applied in countless fields as a 
theoretical framework that helps explain how and why individuals make rational choices in many 
different situations. Game theory plays a vital role in our world; in fact, its relevance can be 
shown by twelve economists being awarded the Nobel Prize in Economic Sciences over the 
past fifty years for their contributions to game theory. In today’s world, experts in the fields of 
economics, business, politics, psychology, science, and many more utilize game theory as a 
framework to aid in strategic decision-making. By understanding how individuals and entities 
can act rationally to best meet their own goals, society can both better realize optimal outcomes 
and predict future events with greater accuracy. 

While much of simple game theory is quite intuitive, a salient part of game theory is the 
mathematics that formalizes such game-theoretic concepts; these mathematical models are 
crucial in building the backbone of the theory itself. In the next section, the simple yet 
fundamental concepts of game theory will be presented in both an intuitive and mathematical 
way. While there exist many more complex aspects of game theory, knowledge of these 
fundamental concepts is crucial in understanding how game theory can be applied to the real 
world. 

Fundamental Concepts of Game Theory 

As a general reminder, game theory is the study of repeated interactions between individuals or 
entities. In game theory, a game refers to a specific scenario where any number of players aim 
to make strategic decisions in their interaction with others. A player can be an individual, a 
group, a corporation, a nation, or any association that can be classified as a singular player 
within the game. When a player makes a decision or a choice, they aim to do one that is most 
desirable to them. The way to quantify this is to define this numerically as their utility, which is 
any real number that measures the satisfaction a player would derive from taking any specific 
action. The utility can be any number, either positive, negative, or zero, and the greater the 
number is, the higher the satisfaction the player would derive. Mathematically, the utility gained 
from a player of action  is represented by i . Utility functions are one of the most important 𝑖 𝑎 𝑢 (𝑎)
concepts within game theory. 
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Normal Form Games 

A normal form game is the most standard representation of a game in game theory. A game is 
said to be in normal form if:  

● The set of finite players is  𝑁 = 1, …, 𝑛{ }
● Each player  has a set of strategies i  available for . The combination of all sets of 𝑖 𝑆 𝑖 ∈ 𝑁

strategies is 1  ⋯  n = i 𝑆 = 𝑆 × × 𝑆
𝑖 = 1

𝑛

∏ 𝑆

● Each player  has a utility function i : for . Simply, i is the utility derived by 𝑖 𝑢 𝑆 → 𝑅 𝑖 ∈ 𝑁 𝑢 (𝑠) 
player  from strategy  where    and i  . 𝑖 𝑠, 𝑠 ∈ 𝑆 𝑢 (𝑠) ∈ 𝑅

To explain in non-mathematical terms, the first condition establishes the existence of a finite 
number of players within the game, the second condition establishes the existence of a set of 
strategies for each player within the game, and the third condition assigns a certain utility value 
that each player receives based on their actions and the actions of the other players. 
Additionally, a relevant yet non-crucial distinction to make is that the set of strategies i  for  𝑆 𝑖 ∈ 𝑁
are pure strategies, meaning that a player chooses a single action and sticks with it (as opposed 
to mixed strategies, where a player probabilistically chooses their action). The set of strategies 𝑆
i  for  can also be either finite or infinite.  𝑖 ∈ 𝑁

In simpler games where only two players exist and their sets of strategies are limited to a 
smaller number of actions, their utility functions can be represented in a payoff matrix, which 
provides a visualization of a normal form game. For example, consider the following table: 

Example Payoff Matrix 

 Player 2: Action X Player 2: Action Y 

Player 1: Action A (3, 1) (2, 0) 

Player 1: Action B (0, 2) (-2, -2) 

Here, Player 1 has the choice to take actions A or B, and Player 2 has the choice to take actions 
X or Y. The four payoff values represent the utility derived by each player based on the actions 
taken by Players 1 and 2. For example, if Player 1 takes action A and Player 2 takes action X, 
the utility payoff shown in the appropriate box is (3, 1). This means that from these actions, 
Player 1 would have a utility value of +3 and Player 2 would have a utility value of +1. The 
payoff matrix is a simple yet effective way to visualize a normal form game and will be used 
extensively during the analysis later on. 

Nash Equilibrium 

Before exploring concepts of equilibrium, it is important to define notations of each player’s 
strategies. The following mathematical definitions are corollaries of the standards of a normal 
form game established above: 
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● 1   n i  -i   for  𝑠 = (𝑠 , …, 𝑠 ) = (𝑠  , 𝑠 ) ∈ 𝑆 𝑖 ∈ 𝑁
● -i 1   i-1  i+1  n  for  𝑠 = (𝑠 , …, 𝑠 , 𝑠 , …, 𝑠 ) 𝑖 ∈ 𝑁

● -i  j where     𝑆 =
𝑗 = 1

𝑛

∏ 𝑆 𝑗 ≠ 𝑖

● i  -i   𝑆 × 𝑆 = 𝑆

In non-mathematical terms, there exists a specific strategy i that is unique to a player , and 𝑠 𝑖 ∈ 𝑁
-i refers to the set of strategies by all other players except player . Additionally, the strategy set 𝑠 𝑖

of player , i, taken together with the strategy set of all the other players except player , -i, 𝑖 𝑆 𝑖 𝑆
combine to make up the combination of all sets of strategies, . 𝑆

Another notable concept in game theory is the Nash Equilibrium, named after the American 
mathematician John Nash, who was awarded a Nobel Prize in Economics in 1994. A Nash 
Equilibrium describes a situation within a game where no singular player could achieve any gain 
by changing their own strategy, assuming the strategy of the other players is unchanged; in 
effect, the game has reached a point of equilibrium. For a player , a specific strategy i  i 𝑖 ∈ 𝑁 𝑠 ∈ 𝑆
is a best response to a profile of strategies -i  -i if:  𝑠 ∈ 𝑆

● i i, -i, i ′i, -i) 𝑢 (𝑠 𝑠 ) ≥ 𝑢 (𝑠 𝑠

for all ′i  i. A player’s best response is a strategy that produces the highest utility outcome for 𝑠 ∈ 𝑆
the player, assuming the other players’ strategies are constant and don’t change. If the best 
response of a player  to other players’ profile of strategies -i is a unique best response (i.e. if 𝑖 𝑠
the utility function on the left side of the inequality is strictly greater than the utility function on 
the right side), the specific strategy i is a strict best response. The symbol ′ in ′i is known as the 𝑠 𝑠
“prime” of the set i, which notationally denotes the complement of set i. The complement of a 𝑠 𝑠
set is everything that is not in the set but is within a larger set. For example, if there exists a set 
(2, 4, 6, 8), and a set A is defined to be (2, 4), then A′ is (6, 8) as those are the terms that exist 
within the larger set but aren’t in set A. A’ (pronounced “A prime”) is the complement of set A.  

Now, a set of strategies * *1   *n    is a pure strategy Nash Equilibrium if:  𝑠 = (𝑠 , …, 𝑠 ) ∈ 𝑆

● i * i *i, *-i, i i, *-i) 𝑢 (𝑠 ) =  𝑢 (𝑠 𝑠 ) ≥ 𝑢 (𝑠 𝑠

for all i  i and . In non-mathematical terms, *i refers to the equilibrium strategy of a 𝑠 ∈ 𝑆 𝑖 ∈ 𝑁 𝑠
player  and i denotes any possible strategy player  can choose (not necessarily the 𝑖 𝑠 𝑖
equilibrium strategy). Additionally, for a player , their set of strategies *i is a best reply to the 𝑖 𝑠
strategies of all the other players, *-i. If the utility derived by a player  from a set of strategies * 𝑠 𝑖 𝑠
is a unique best response (i.e. if the utility function on the left side of the inequality is strictly 
greater than the utility function on the right side), there exists a strict Nash Equilibrium. In a strict 
Nash Equilibrium, no player can increase their payoff by unilaterally changing their strategy. 
While these two aforementioned explanations seem incredibly similar, the only difference is that 
the first refers to a specific strategy, i, whereas the second refers to an entire set of strategies,  𝑠
*i. Intuitively, if every player  has played the strategy that gives them the highest utility 𝑠 𝑖 ∈ 𝑁

payout, a Nash Equilibrium would be formed as each player would have no incentive to change 
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their strategy as their highest possible utility would’ve been achieved. A Nash Equilibrium has 
the property that no player would regret having played the action that they played in the game, 
assuming the strategy of the other players remains unchanged. 

Now, following the mathematical definitions described above, let’s present a couple of examples 
of finding a Nash Equilibrium within a 2x2 payoff matrix below. The first example is a 
coordination game called the Stag Hunt Game, coined by the philosopher Jean-Jacques 
Rousseau. In this game, the two players (two hunters) A and B each have the option to either 
hunt for a stag (strategy labeled S) or a hare (strategy labeled H): 

Stag Hunt Game 

 Player B: S Player B: H 

Player A: S (5, 5) (0, 3) 

Player A: H (3, 0) (4, 4) 

To successfully hunt a stag, the efforts of both hunters are required, but both hunters taking the 
action of hunting for a stag together result in the best mutual outcome. However, the two hunters 
are unaware of the other’s strategy as they are physically separated without any 
communication. As a result, a more risk-averse hunter might opt to hunt for a hare as they are 
easier to catch, and it guarantees a minimum payout of +3 while the minimum payout of 
choosing a stag is 0, as a stag is too large to be hunted alone. In this specific game, there exist 
two pure strategy Nash Equilibria: the choices of (S, S), and (H, H). To find these Nash 
Equilibria, we must analyze each player’s best response given the other player’s action. If player 
A chooses S, player B will also choose S as the payoff of choosing S (+5) is greater than 
choosing H (+3). If player B chooses S, player A will likewise also choose S due to the higher 
payout. In the case players A and B have chosen (S, S), neither will have the incentive to 
change their strategy, assuming the other player’s strategy remains constant, resulting in one 
Nash Equilibrium. Similarly, if player A chooses H, player B will also choose H as the payoff of 
choosing H in this situation (+4) is greater than choosing S (+0). If player B chooses H, player A 
will also choose H due to the higher payout. In the case players A and B have chosen (H, H), 
neither player will have the incentive to change their strategy (assuming the other player’s 
strategy remains constant), resulting in the second Nash Equilibrium. While there are many 
games with only one pure strategy Nash Equilibrium, the case of the Stag Hunt Game provides 
an example of a game that has more than one pure strategy Nash Equilibrium.  

However, it is possible that a game might not have any pure strategy Nash Equilibria: an 
example is the Matching Pennies Game, where two players simultaneously place a coin on a 
table and if the results match (i.e. Heads and Heads or Tails and Tails), player A wins, and if the 
results don’t match, player B wins. In the Matching Pennies game, there is no pure strategy 
Nash Equilibrium as each player’s best response continuously changes with the other player’s 
choice. 
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Backward Induction & Extensive Form Games 

Previously, we encountered normal form games where each player  selected a strategy 𝑖 ∈ 𝑁
with beliefs about the other players’ strategies, but not full knowledge (as players move 
simultaneously). In contrast to normal form games, extensive form games describe situations 
where players make actions sequentially, having knowledge of all previous actions that have 
been performed prior to their move. Extensive form games allow one to understand strategies in 
response to the strategies of others, as the game changes from being played simultaneously to 
sequentially. For simplicity, this paper only discusses finite extensive form games of perfect 
information, where players take actions sequentially in a specific order, every player is 
knowledgeable about all previous information, and every player only moves a finite number of 
times. The simplest and most effective way to visualize an extensive form game is through a 
game tree, where nodes of the tree represent a specific stage of the game. The game starts 
from a node called the initial or root node, and branches that connect to other nodes represent 
the actions taken by a player. Nodes that don’t traverse to another node are called terminal 
nodes, which end the game. At the end of each terminal node, utility values are listed for each 
player . Every other node, called a non-terminal node, represents various stages within the 𝑖 ∈ 𝑁
game where a player can take a specific action. The specific player that has the choice to take 
an action is specified by the non-terminal nodes, and their action is represented by branches. 
For example, consider the following game tree that gives a visual representation of an extensive 
form game: 

 

In the above figure, the game starts with player 1 having the choice to either choose action L 
(left) or R (right). If player 1 chooses action L, player 2 can then choose either action L or R; 
however, if player 1 chooses action R, player 3 has the choice to choose action L or R. At the 
end of every terminal node, a utility payoff table is shown with the top value representing player 
1’s utility, the middle value representing player 2’s utility, and the bottom value representing 
player 3’s utility. Simply, the players’ actions create a path through the tree and dictate each 
player’s utility outcomes. For example, if player 1 took action L and player 2 also took action L, 
all three players would end with a utility of +3, as specified in the utility payoff table.  

Interestingly, a Nash Equilibrium can be found in this game through means of backward 
induction, or traversing backward through the tree and making rational assumptions about what 
each player would do assuming their intention is to maximize their own personal utility. Consider 
the choice of player 2 if player 1 chooses the action L. Player 2 will then choose the action R, as 
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the payout of +4 > +3. Now, if player 1 chooses the action R, player 3 will choose action R as 
their payout of +2 > 0. Player 1 will foresee these choices and decide that they would rather get 
a payout of +2 (if they choose action R) over +1 (if they choose action L). As a result, player 1 
would choose action R, player 3 would choose action R, and each player would end up with a 
utility value of +2 at the end of the game. This outcome represents a pure strategy Nash 
Equilibrium. More generally, every finite extensive form game of perfect information has a pure 
strategy Nash Equilibrium. 

An important note to make is that moving first in an extensive form game can be either 
advantageous or disadvantageous. In the example discussed above, player 1 has the 
advantage of rationally predicting what moves players 2 and 3 would make based on player 1’s 
move. However, this isn’t always the case; sometimes, the players that move after benefit from 
knowing which strategy the first player has taken. For example, consider the aforementioned 
Matching Pennies game; in that example, the player moving last would always have the 
significant advantage of knowing all previous actions taken by the other player.  

In extensive form games when utilizing backward induction, it’s only necessary (and simpler) to 
just understand the intuition behind the analysis rather than the mathematics. However, as I did 
with normal form games, I now provide a simple overview of the mathematics behind extensive 
form games. A finite extensive form game of perfect information consists of the following: 

● A finite set of players  𝑁 = 1, …, 𝑛{ }
● A finite set of nodes 1   n  that form the game tree 𝑋 = {𝑥 , …, 𝑥 }
● A finite set of terminal nodes 1   n  where  𝑍 = {𝑧 , …, 𝑧 } 𝑍 ⊂ 𝑋
● At each non-terminal node  there exists a player  for  a set of possible 𝑥 ∉ 𝑍, 𝑖(𝑥) 𝑖 ∈ 𝑁,

actions  and a successor node  resulting from any action  𝐴(𝑥), 𝑛(𝑥,  𝑎) 𝑎 ∈ 𝐴
● A utility function i : for . Simply, i is the utility gained by player  if a 𝑢 𝑍 → 𝑅 𝑖 ∈ 𝑁 𝑢 (𝑧) 𝑖

terminal node  is reached. 𝑧 ∈ 𝑍

Now, the informal explanation of the existence of a pure strategy Nash Equilibrium in every finite 
extensive form game of perfect information goes as follows, assuming the aforementioned 
mathematical definitions. To start, we can create a set that contains the stages of the game 𝑆 𝐾 
such that . Consider all the nodes  in stage ; it is known that the player  who 𝑆 = 1, …, 𝐾{ } 𝑥 𝐾 𝑖
moves will make a move that maximizes their utility; let’s call this specific move K. By 𝑚
backward induction, now move to stage . Every other player will assume that the player  𝐾 − 1 𝑖
who moves at stage  will make the specific move K. With this knowledge in mind, the player 𝐾 𝑚
moving at stage  will look for the move that maximizes their utility (accounting for move 𝐾 − 1 𝑚
K as well). Once this choice is found, we move to stage , and this process will continue 𝐾 − 2
until stage  is reached. As a result, due to the fact that every player  has full and perfect 1 𝑖 ∈ 𝑁
knowledge about every stage of the game, there exists a pure strategy Nash Equilibrium in 
every finite extensive form game of perfect information. 

In contrast to normal form games where each player moves only once and actions are taken 
simultaneously, extensive form games account for the sequential timing of strategic decisions 
where players can also move more than once. While both of these forms of games have 
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relevant applications, it should be noted that any finite extensive form game can be represented 
in the normal form, allowing for both forms to be used in various game scenarios. 

Things to Consider & Important Notes 

To conclude this section, let’s look at some important concepts to remember when dealing with 
game-theoretic concepts. The following are all crucial concepts that should be defined when 
dealing with game theory: the players, all the actions available to each player, the timing of the 
interactions (i.e. simultaneous or sequential moves), the order of the players’ actions, the 
information available to players at every stage of a game, and the utility payoffs for each player 
based on the actions played. The utility payoff function of each player should take into account 
both the costs and benefits of every potential outcome. 

Additionally, one of the most essential and basic assumptions that much of game theory 
operates under is that players within a game are rational and self-interested (i.e. they take 
actions that are optimal for them). Of course, this isn’t always the case in reality due to the 
existence of inherent human irrationality, but having players within a game act rationally helps to 
provide a clearer understanding of many scenarios. Additionally, this paper is based upon the 
principles of noncooperative game theory, where every player acts self-interested without the 
existence of any binding agreements with each other, as opposed to cooperative game theory. 
This is a crucial distinction to make, so it should be noted that every player acts in their own best 
interest within the examples discussed in this paper. 

Finally, it should be noted that the game-theoretic concepts covered so far in this paper are not 
all that game theory has to offer. There are countless more topics in game theory, but many of 
these topics are significantly more advanced and, more generally, are outside the scope of this 
paper. 

Analysis of Present-Day Nuclear Weapon Usage 

This section provides a comprehensive game-theoretic analysis of present-day nuclear weapon 
usage and predictions for future prospects. As a reminder, today, nine nations around the world 
either have or are believed to have access to nuclear weapons: the United States, Russia, 
China, France, the United Kingdom, India, Pakistan, North Korea, and Israel (with a modicum of 
opacity). Additionally, Iran has a controversial nuclear program, claiming it is for peaceful 
purposes while others suspect otherwise; Saudi Arabia has expressed interest in nuclear 
technology if Iran develops nuclear weapons; Turkey is described by some expert analysts to be 
considering nuclear weapons given regional tensions; and Japan has the technical capabilities 
but has chosen not to develop nuclear weapons due to its pacifist constitution. 

In this game-theoretic analysis, however, we only consider the interactions between two 
countries, Country A and Country B. While in reality there could exist interactions between 
several countries in a nuclear context, reducing the interaction to only two nations helps simplify 
the game-theoretic analysis and provides a clearer, more intuitive understanding of the existing 
affairs of nuclear weapon usage. To start, we define the specific parts of this game in normal 
form, in accordance with the mathematical definitions of a normal form game shown above: 
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● The set of players is finite. There exist two players: Country A and Country B 
● Each player in the game has strategies: Use Nukes and Don’t Use Nukes 
● Each player in the game has a specific utility value for all of the game’s outcomes 

Since this is a relatively simple game with only two players and two strategies available for each 
player, their utility functions resulting from the potential outcomes of the game can be visualized 
in a two-by-two payoff matrix, shown below: 

Payoff Matrix for Present-Day Nuclear Weapon Usage 

 Country B: Use Nukes Country B: Don’t Use 
Nukes 

Country A: Use Nukes (-10, -10) (3, -6) 

Country A: Don’t Use 
Nukes 

(-6, 3) (4, 4) 

Looking at this table, it becomes apparent that both nations using nukes is the mutually worst 
outcome, as they both earn a utility value of -10. This intuitively makes sense, as both nations 
using nuclear weapons would be detrimental to both parties, and could quickly spiral into a 
continuing conflict with potentially severe damage. If Country A uses nukes and Country B 
doesn’t, then Country B suffers the damage of the nukes used on them, hence earning a utility 
value of -6. This utility value is greater than that of -10, as presumably the conflict would be 
resolved at that moment without the immediate potential for more nuclear damage. Country A 
would earn a utility value of +3, as they would likely have won any conflict or dispute without 
suffering any damages from nuclear weapons. However, the reason this utility value isn’t higher 
is they could potentially face repercussions from other nations or organizations due to their 
actions and could be made a pariah on the international stage. The opposite event occurring 
(Country A not using nukes and Country B using nukes) would flip the utility values: Country A 
would earn a utility of -6 and Country B would earn a utility of +3. If both nations refrain from 
using nuclear weapons, they each earn a utility value of +4. While a conflict likely would not 
have been resolved without diplomatic intervention, neither nation would have suffered the 
significantly immense damages that would result from the usage of nuclear weapons. Logically, 
nuclear non-usage is the best outcome for both nations. 

As a result, from the explanation given above, the outcome where both nations choose the 
option (Don’t Use Nukes, Don’t Use Nukes) is a pure strategy Nash Equilibrium. For a further 
explanation, consider the following, with all utility values mentioned below coming from the 
above payoff matrix. As a reminder, a pure strategy Nash Equilibrium is a situation where no 
singular player can unilaterally improve its utility (i.e. achieve a gain by changing their own 
strategy, assuming the strategy of the other player(s) is unchanged). From Country A’s 
perspective, if Country B chooses the option of not using nukes, Country A will also choose that 
option. From Country B’s perspective, if Country A chooses the option of not using nukes, 
Country B will also choose that option. In the case that both nations choose not to use nukes, 
neither player will have the incentive to change their strategy as they cannot receive a higher 
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payout. As a result, since neither nation can unilaterally improve its utility, the outcome (Don’t 
Use Nukes, Don’t Use Nukes) represents a pure strategy Nash Equilibrium within the game. 
Mathematically, this outcome satisfies the definition of a pure strategy Nash Equilibrium as well. 

It should also be noted the action Don’t Use Nukes is a dominant strategy for both Country A 
and Country B in this game. A dominant strategy in game theory is a strategy that produces a 
higher utility than any other strategy, irrespective of the strategies played by the other player(s) 
in the game. When a dominant strategy holds, a player doesn’t need to make predictions about 
moves from the other players; they just need to play the strategy that provides them the highest 
utility. When dominant strategies exist, the game-theoretic analysis of any event becomes 
simpler. However, it should be noted that in many games, dominant strategies do not always 
exist. 

Extensive-Form Game Application 

The previous section provided a game-theoretic analysis of present-day nuclear weapon usage 
in the normal form, meaning that both players within the game moved simultaneously. However, 
this game can also be modeled in extensive form, where players move sequentially. This adds 
another important concept to the game: time. In reality, strategies played by a player don’t 
always occur immediately; likewise, in this case, a nuclear weapon isn’t going to instantaneously 
reach its target once launched. Additionally, many developed nations have sophisticated 
defense systems that can detect the presence of any weapons launched. For example, it takes 
26 minutes and 40 seconds for a nuclear weapon launched by Russia to reach the East Coast 
of the United States. In that time, the United States could feasibly detect the presence of a 
nuclear warhead barreling towards them, and have an adequate amount of time to mount a 
response. In this case, the United States would make a move after Russia, meaning this game 
can be modeled as an extensive form game. 

As a reminder, an extensive form game allows one to understand strategies in response to the 
strategies of others, as the game is played sequentially. In this case, this game is a finite 
extensive form game of perfect information, meaning every player is knowledgeable about all 
previous information and moves only a finite number of times. Below, the specific parts of this 
game in extensive form are defined: 

● The set of players is finite. There exists two players: Country A and Country B 
● There exists a finite set of nodes 
● Each player in the game has a specific utility function at each terminal node 

Now, consider the following game tree that provides a visualization of this game in the extensive 
form between Country A and Country B: 
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The utility values shown in this game in extensive form are the same as those shown in the 
normal form for consistency within this paper. Here, Country B reacts to Country A only if 
Country A chooses the strategy Use Nukes. We can apply backward induction to this game tree 
to find the Nash Equilibrium. Consider the choice of Country B if Country A uses nukes. Country 
B will opt not to use nukes, as the utility of -6 is greater than -10. In this case, Country A will 
receive a utility value of +3. However, Country A also has the option not to use nukes, in which 
case they will receive a utility value of +4. As a result, Country A will opt to use the strategy of 
Don’t Use Nukes, which is an equilibrium point. This is also Country B’s best outcome as it 
provides its highest utility. The same logic applies when Country A reacts to Country B’s actions 
(i.e. when Country A is switched with Country B in the above game tree). 

In this case, modeling the game in extensive form helps account for the sequential timing of 
strategic decisions. However, it is helpful to visualize the games in both their normal form and 
extensive form. Throughout both of these forms of games, we have concluded that the best 
outcome for both Country A and Country B is for both of them to select the action Don’t Use 
Nukes. This game-theoretic model helps support and explain the non-usage of nuclear weapons 
in the present-day world, despite their existence as the most formidable tool of warfare. 

Implications for Present-Day Nuclear Strategy 

Now, we explore how the above game-theoretic analysis compares to the actual present-day 
nuclear strategy of the countries with nuclear weapons. While our current world is riddled with 
conflicts, there isn’t any evidence of nuclear weapons being used. All available data supports 
this claim in many different ways: for example, the present-day global nuclear stockpile contains 
around 13,000 weapons, a significant decrease from the 60,000 weapons during the peak of the 
Cold War. Additionally, many nations that were suspected of developing nuclear weapons have 
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since abandoned such efforts. In the 1970s, more than a dozen nations were pursuing nuclear 
weapons, but since then, almost all of them have stopped their development efforts. 
Furthermore, publicly documented nuclear weapon tests have essentially ceased. In 1962, there 
were 178 recorded nuclear tests; today, there are almost zero. The last time nuclear weapons 
were used with the deliberate intent of causing human casualties was during World War II. The 
last time nuclear weapons were publicly aimed at another nation with a real threat of destruction 
was over sixty years ago, during the Cuban Missile Crisis.  

Since then, nuclear weapons have primarily existed as a deterrent to conflict by being a show of 
credibility and strength. In economics, the term “signaling” refers to one party conveying some 
sort of information about itself to another party. In this context, nuclear weapons represent the 
perfect “signal”; they are a show of strength to other countries. Additionally, nations know that 
any nuclear outcome could represent an existential threat to humanity and are aware of the 
threat of mutually assured destruction (MAD). Mutually assured destruction, a principle of 
deterrence, refers to the idea that a nuclear attack by any one superpower would be met with a 
nuclear counterattack by another superpower, resulting in complete annihilation for both parties.  

As a result, many countries around the world have aimed to reduce the collective threat that 
nuclear weapons pose through international agreements. For example, 191 countries have 
signed the Nuclear Non-Proliferation Treaty (NPT) which aims to prevent the spread of nuclear 
weapons and weapons technology. Additionally, 177 countries have signed the Comprehensive 
Test Ban Treaty (CTBT), which prohibits any nuclear weapon explosion anywhere in the world. 
More recently, 70 countries have signed the Treaty on the Prohibition of Nuclear Weapons 
(TPNW), which bans the use, possession, testing, and transfer of nuclear weapons under 
international law. While these treaties vary in degrees of prohibition and enforceability, the 
apparent underlying point is that the vast majority of countries in the world have legally agreed 
to reduce the threat of nuclear weapon destruction through binding agreements. 

Implications for Future Nuclear Strategy 

In the immediate future, nuclear weapon usage isn’t likely to significantly change from the status 
quo right now. While there are sure to be technological advancements in many different fields, 
the existential threat posed by nuclear weapons isn’t going to disappear, and countries around 
the world will remain aware of their threats. In fact, the last time our world came anywhere close 
to nuclear destruction was in October 1962 during the Cuban Missile Crisis.  

The Cuban Missile Crisis refers to the confrontation between the United States and the Soviet 
Union during the Cold War that put the world on the brink of nuclear war. Following the failed 
American Bay of Pigs Invasion, the Soviet Union and Cuba reached an agreement to put Soviet 
nuclear missiles in Cuba to deter any future American invasion attempt. After an American U-2 
spy plane photographed the nuclear missiles being built dangerously close to American soil, 
President Kennedy ordered a naval quarantine around the island of Cuba and demanded the 
removal of the Soviet nuclear weapons. Recognizing the dangerous possibility of a devastating 
nuclear war, Soviet leader Nikita Khrushchev agreed to remove the nuclear weapons from Cuba 
given that the United States would pledge not to invade Cuba, and in a separate deal not 
publicly revealed, remove their own weapons from Turkey. On October 28, Khrushchev publicly 
announced that the Soviet missiles would be removed from Cuba, and on November 20, 1962, 
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the United States ended its naval blockade. In April 1963, the United States removed its nuclear 
missiles from Turkey.  

Similar to the game-theoretic analysis of today’s nuclear weapon usage, both the United States 
and the Soviet Union were faced with the same dilemma. In the end, both nations agreed to not 
use nuclear weapons and de-escalate the situation, resulting in the game-theoretic Nash 
Equilibrium (Don’t Use Nukes, Don’t Use Nukes). Following the Cuban Missile Crisis, both 
nations took steps to improve their relations: a “Hotline” was established to improve 
communications and both nations signed the Limited Nuclear Test Ban Treaty in July 1963.  

In June 1963, President Kennedy explained why both nations decided to de-escalate: “Our most 
basic common link is that we all inhabit this small planet. We all breathe the same air. We all 
cherish our children's future. And we are all mortal." In the end, the same framework and 
conclusions derived from today’s analysis of nuclear weapon usage can be found in the Cuban 
Missile Crisis over sixty years ago. As a result, as long as the leaders and governments of our 
world remain rational, it can be safe to say that the results seen both in the past and the present 
will most likely remain the same in the near future. 

Conclusion 

Ultimately, game theory is a helpful framework that helps explain how and why various players 
make choices in any given situation. One of the many applications of game theory is analyzing 
the usage of nuclear weapons in the present-day world. Despite their existence as the most 
formidable tool of warfare, nuclear weapons have not been used with resulting human 
casualties in almost eight decades. Through the game-theoretic analysis extensively discussed 
in this paper, it has been illustrated how and why mutual cooperation has been maintained to 
prevent nuclear conflict and why nuclear arsenals are maintained more as deterrents and 
symbols of strength rather than active tools of war.  

It is essential to recognize how the players or key factors in this game can change, which 
include countries that have nuclear weapons, countries that may later have nuclear weapons, 
international organizations, and new or expiring treaties. Furthermore, one of the most critical 
yet fair assumptions that game theory tends to act under is that the players in the game are 
rational. While this is always the case in theory and tends to be the case in reality, it’s important 
to remember that not all players, especially humans, always act rationally. Overall, there will 
always be certain limitations when applying a theoretical framework to a situation in reality. 
However, game theory remains incredibly relevant by guiding players towards the most effective 
and rational strategies in any complex environment, and in this context, helps to analyze and 
prove the non-usage of nuclear weapons in the present-day world. 
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