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Abstract 
Transfer learning stands as a breakthrough methodology within artificial intelligence, offering 
unprecedented advantages in medical imaging and cancer diagnosis. Transfer learning needs 
less data than deep learning to build models for new problems. This paper explores how 
transfer learning techniques can improve both the detection and diagnostic accuracy of 
Pancreatic Ductal Adenocarcinoma (PDAC), a cancer known for its high mortality rate and 
difficulty in early diagnosis. This review analyzes transfer learning applications to three key data 
types: computed tomography scans, ultrasound scans, and cell biopsies. While still a young 
field, early findings suggest that transfer learning improves diagnostic accuracy while reducing 
the need for data, making it an efficient alternative to traditional deep learning. Transfer learning 
achieved AUC scores comparable to deep learning and demonstrated higher accuracy than 
human professionals. However, there is still more to be done in this field, especially the need for 
further studies to validate transfer learning’s efficacy in PDAC detection. This research 
underscores the potential use of transfer learning in advancing more effective diagnostics for 
PDAC, which has significant potential to improve the current poor outcomes. 

Introduction 
Known as a “silent” disease due to the lack of symptoms in early stages, pancreatic cancer is 
one of the hardest diseases to detect. Due to its location in the pancreas, surrounded and 
hidden behind other organs, pancreatic tumors are nearly impossible to detect during a routine 
medical checkup. Pancreatic cancer often goes undetected due to a lack of symptoms in its 
early stages. This allows the disease to progress unchecked until it reaches more advanced 
stages. Once symptoms emerge, treatment efficacy is significantly reduced, and in many cases, 
the disease proves fatal. The early-stage detection of pancreatic cancer remains exceedingly 
uncommon, with only 9.7% of people diagnosed in its early stage.1 By the time of detection in 
most individuals, pancreatic cancer has already metastasized, posing an even greater risk for 
patients. Pancreatic cancer is the fourth leading cause of cancer-related death within Western 
societies and is projected to rise to the second leading cause by 2028.1 Even though pancreatic 
cancer makes up only 3% of all cancers, it has a disproportionately high death rate with an 
annual death rate of 10.9 per 100,000.1 Moreover, its survival rate has not improved over these 
past forty years unlike that of most other cancers. There are many forms of pancreatic cancer, 
but this review is focused on Pancreatic Ductal Adenocarcinoma (PDAC), which forms when the 
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exocrine duct cells that line the pancreas become cancerous and accounts for 90% of all cases 
of pancreatic cancer.1 
There are several methods that clinicians currently use to detect PDAC,  including 
Computerized Tomography Scan (CT Scan), Positron Emission Tomography Scan (PET Scan), 
Magnetic Resonance Imaging (MRI), Endoscopic Ultrasound (EUS), Ultrasound, and cell 
biopsy. Table 1 gives a brief description of the current methods used by doctors. 
 
Table 1. Standard detection methods for PDAC. *This review analyzes these data types. 

Detection 
Method 

How does it work? Pros Cons 

CT 
Scan*2,3 

Computerized x-ray imaging, 
where a narrow beam of 
x-rays is aimed at a patient 
and quickly rotated to form 
cross-sectional images, which 
are stacked to form 3D 
images 

Diagnose possibly 
fatal diseases, 
possibly eliminate 
the need for 
surgery, and 
monitor internal 
parts of your body  
 

Expensive and 
consumes lots of 
energy, exposure to 
low amounts of 
radiation, contrast 
CT scans have 
exposure to 
contrast dye, 
semi-invasive PET 

Scan2,4 
A small dose of radioactive 
sugar is injected and 
collected by cancer cells, 
which is shown on images 
and is often used alongside 
CT scans 

MRI3,5 Uses magnetic fields to 
provide a clear and detailed 
picture of an organ 

Superior imaging 
depictions for soft 
tissues, no 
radiation, 
noninvasive 

Strong magnetic 
forces, which can 
have safety 
concerns, are 
expensive 

EUS*3,6 A thin, flexible tube called an 
endoscope is placed in the 
digestive tract, which releases 
ultrasound waves to create a 
detailed image of the 
digestive tract 

High diagnostic 
accuracy, tissue 
sampling ability 

Operator 
dependency, 
potential internal 
complications, 
expensive, not 
available in some 
countries, 
minimally-invasive 

Ultrasound
*7  

A transducer is pressed 
against the area that is being 
studied, which sends and 

Inexpensive, 
non-invasive, 
quick, good for 

Can’t penetrate 
bone, air, or deep 
structures 

2 

https://www.zotero.org/google-docs/?Zief8D
https://www.zotero.org/google-docs/?wOjzVq
https://www.zotero.org/google-docs/?rsYqf6
https://www.zotero.org/google-docs/?WNHgyV
https://www.zotero.org/google-docs/?uVU9FW
https://www.zotero.org/google-docs/?tKzLR7


collects sound waves to map 
an image 

soft tissue 
imaging 

Cell 
Biopsy*8,9 

A doctor takes a small sample 
of cells from a region of your 
body through a needle or 
other instrument to analyze 
the cells, usually through a 
stain 

Gold-standard 
diagnosing, tumor 
staging, and 
monitoring 
treatments 

Invasive, potentially 
internal 
compilation, 
expensive, operator 
dependency 

 
 
Despite the existence of these methods shown in Table 1, the ability to detect PDAC is still a 
work in progress. In recent years, advancements in AI have led to the development of new 
methods for detecting and analyzing not just pancreatic cancer but many types of cancer, with 
improved results in early detection. In recent years, the healthcare system has increasingly 
integrated technology, as evidenced by the FDA’s approval of over 1,000 AI-assisted medical 
devices.10 A notable example in cancer detection is a model trained on CT scans for lung 
cancer, which surpassed radiologists in accuracy. Additionally, the health company Optellum 
improved early detection by reducing false negatives in lung cancer screenings.11 As of October 
2023, there are 71 and counting AI-associated devices that have been documented and have 
already received FDA approval to be used in oncology-related fields.12 Cancer radiology 
accounts for 54.8% of these devices, followed by pathology, which includes 19.7%, and 
radiation oncology with 8.5%.12 The majority of these devices are created with machine learning, 
a key subfield of AI. 
 

3 

https://www.zotero.org/google-docs/?jUPPRa
https://www.zotero.org/google-docs/?0zEmwY
https://www.zotero.org/google-docs/?3lrPld
https://www.zotero.org/google-docs/?lhqZTn
https://www.zotero.org/google-docs/?6JBj2f


  
Figure 1. Deep Learning vs Transfer learning architecture. The left half represents a deep 
learning architecture, and the right half represents a transfer learning architecture. The blue 
portion indicates nodes of a deep learning model, and the red portion is the re-trained elements 
(last layer of the deep learning model). Transfer learning usually borrows parameters from an 
existing model and trains only the last layer for a new task. 
 
Machine learning has multiple subfields, including deep and transfer learning. Deep learning is 
the use of multi-layered artificial neural networks to learn from data by drawing patterns to form 
conclusions.13 Deep learning was first used with cancer data in the early 2000s for cancer 
classification and subtype detection. This involves utilizing deep learning to analyze 3D images 
from Digital Breast Tomosynthesis for breast cancer detection. Since then, it has evolved into a 
more complex field that enables doctors to aid not only in cancer detection but in treatment as 
well. From drug-target identification and discovery by analyzing genomic and epigenomic data 
to advanced early cancer detection, deep learning combines data from all sorts of medical fields 
to get a comprehensive understanding of cancer biology.14 Deep learning in PDAC detection 
refers to the use of advanced neural networks specifically identifying cells that may be 
cancerous in the pancreatic region. Many of the studies included in this review are based on 
deep learning. 
 
The focus of this review, however, is on the branch of machine learning called transfer learning. 
Transfer learning is a machine learning technique that leverages a pre-trained model—originally 
developed for one task or dataset—to improve performance on a different but related task or 
dataset.15 By reusing learned features and knowledge, transfer learning accelerates training, 
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enhances accuracy, and reduces the need for large labeled datasets. Transfer learning requires 
fewer data than traditional deep learning models, making it more efficient for developing 
solutions to novel problems. Figure 1 shows a comparison between the architectures of deep 
learning and transfer learning.  
 
One of the first applications of transfer learning to cancer was with breast cancer imaging, which 
used a transfer learning model to help classify the different types of breast cancers.16 
Nowadays, transfer learning can be applied to almost all forms of image classification, from 
ultrasound images to CT scans. Transfer learning is already applied to improve the accuracy of 
the diagnosis of lung cancer, helping classify Alzheimer's patients' severity based on MRI scans, 
and brain tumor segmentation.17–19 In this review, we will highlight the way transfer learning is 
being applied to different data types, including CT scans, ultrasound, and cell biopsy, to 
compare the effectiveness of transfer learning to deep learning. 
 
Table 2. Types of Detection covered in the papers and their functions. 

Detection 
Type 

Purpose Example 

Survival 
Analysis20 

Predict patient prognosis like 
patient survival time or risk of 
disease progression 

Use techniques like Cox 
Proportional Hazard Models 

Classificatio21 Identify whether a given sample 
belongs to a particular category 

Convoluted Neural Networks 
trained to label images as having 
PDAC or non-PDAC 

Segmentation
21 

Delineate or outline specific 
regions of interest 

U-Net architectures can help 
distinguish regions that may be 
cancerous 

Feature 
Extraction22 

Identify key characteristics or 
biomarkers from images that are 
relevant for diagnosis and 
prognosis 

AI Models can extract 
information like tumour size and 
shape 

 
Researchers employ various methods to assess the performance of models, and the evaluation 
criteria can differ significantly across studies. Table 2 presents the types of analysis and 
detection discussed in this review, highlighting studies that vary in their use of transfer learning 
and deep learning techniques. In these studies, the commonly used metrics included accuracy, 
sensitivity, specificity, precision, F1 score, and index-based measurements. Table 3 presents a 
list of the important metrics and their interpretations.  
 

5 

https://www.zotero.org/google-docs/?Q9Q9ay
https://www.zotero.org/google-docs/?wYZ1Qi
https://www.zotero.org/google-docs/?GgzecA
https://www.zotero.org/google-docs/?b7OJBo
https://www.zotero.org/google-docs/?wOqJBv
https://www.zotero.org/google-docs/?g8OljJ


Table 3. List of metrics and what they measure, 

Metric Function Pros Cons 

Area Under the 
Curve (AUC) / Area 
Under the Receiver 
Operating 
Characteristic Curve 
(AUROC)23 

Evaluates 
classification models, 
particularly in binary 
classification tasks by 
measuring the ability 
of a model to 
distinguish between 
classes 

Threshold-independe
nt, less affected by 
class distribution 

Hard to interpret in 
isolation 

Concordance Index 
(C-Index)24 

A measure of how 
well a model predicts 
the ranking of 
outcomes. Higher 
values indicate better 
prediction 

Useful for survival 
analysis, less 
affected by class 
distribution 

Complex 
interpretation, not 
suitable for discrete 
outcomes 

Index of Prediction 
Accuracy (IPA)25 

A general term for 
metrics that evaluate 
how well a model’s 
predictions match 
actual results 

Simple, intuitive, 
quick evaluation 

Heavily affected by 
class distribution, 
doesn't capture the 
model’s ability to 
distinguish between 
classes 

Sensitivity 
(Recall)23,26 

The ability of a test or 
model to correctly 
identify positive 
cases 

Prioritizes true 
positives, useful for 
imbalanced data 

Ignores false 
positives, which can 
lead to a high false 
positive rate 

Specificity26 The ability of a test or 
model to correctly 
identify negative 
cases 

Prioritizes true 
negatives, useful for 
avoiding false 
positives 

Ignores false 
negatives, less useful 
in positive-detection 
tasks 

Precision23 The proportion of true 
positive predictions 
out of all predicted 
positives 

Focuses on quality of 
positive predictions, 
good for imbalanced 
datasets 

Ignores false 
negatives, not 
effective alone in 
imbalanced cases 
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F1 Score23 A measure of a 
model’s balance 
between precision 
and sensitivity 
(recall), calculated as 
the harmonic mean of 
both 

Balances precision 
and recall, useful for 
imbalanced datasets 

Can mask trade-offs 
between precision 
and recall, which are 
less intuitive 

 

Data Collection 
We reviewed 28 research articles and selected 17 to use, all of which belonged to three major 
data types: CT Scan, ultrasound, and cell biopsies. We found all our sources on Google Scholar 
with the keywords we used below in Tables 4 and 5. 

In examining the three methods, we observed a significantly greater volume of studies on deep 
learning compared to transfer learning. Additionally, prior research utilizing transfer learning for 
the analysis of PDAC CT scans was more readily available than for ultrasound imaging. One 
reason is that CT scans are the most commonly used imaging method for patients with PDAC, 
providing a larger pool of available data. However, CT scans are often more challenging for 
humans to interpret and can yield less accurate results, making them the most prominent 
application of transfer learning to achieve better outcomes. Cell biopsy as the data source was 
heavily researched too, but a majority of the articles don’t relate to using cell biopsies for 
transfer or deep learning, likely because cell biopsy is the gold standard method that many 
doctors use to confirm if a patient has PDAC or not. Despite its promising performance, transfer 
learning has been applied to ultrasound data less frequently than to other imaging modalities. 

 
Table 4. Data type frequency on Google Scholar without applying any time restriction.  

Data Type Results on 
Google Scholar 
with the 
keyword: 
PDAC + Data 
Type 

Results on Google 
Scholar with the 
keyword: 
PDAC + “Transfer 
Learning” + Data 
Type 

Results on Google 
Scholar with the 
keyword: 
PDAC + “Deep Learning” 
+ Data Type 

CT Scan 13,800 entries 286 entries 1,910 entries 

Ultrasound 12,500 entries 168 entries 983 entries 

Biopsy Samples 1,620 entries 27 entries 157 entries 
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Table 5. Data type frequency on Google Scholar from 2022 to 2025. 

Data Type Results on 
Google Scholar 
with the keyword: 
PDAC + Data Type 

Results on Google 
Scholar with the 
keyword: 
PDAC + “Transfer 
Learning” + Data 
Type 

Results on Google 
Scholar with the keyword: 
PDAC + “Deep Learning” 
+ Data Type 

CT Scan 8,460 entries 234 entries 1,480 entries 

Ultrasound 7,870 entries 130 entries 786 entries 

Biopsy Samples 1,180 entries 16 entries 125 entries 
 
 
Table 4 shows the number of entries that emerged on Google Scholar when we input a 
combination of keywords. For example, typing “PDAC + Transfer Learning + Ultrasound” gave 
1490 results. Table 4 was the total generated results, however, we focused our research on 
recent progress, so we further classified results within the past five years, 2022 to 2025. Table 5 
was generated using the same methodology as Table 4; however, it reflects the number of 
entries on Google Scholar from 2020 to the present, rather than all-time results as in Table 4. 
 
Tables 4 and 5 may give the false impression that substantial research has already been 
conducted on transfer learning, particularly in the field of PDAC, but that is not the case. 
Because Google Scholar parses keywords individually, search results often include studies 
unrelated to transfer learning or PDAC, or those that mention transfer learning without 
substantive analysis. Transfer learning is still a developing concept that isn’t fully recognized as 
its keyword yet by Google Scholar, so it ends up giving a far wider range of research rather than 
those solely focused on transfer learning. On Google Scholar, when searching for sources, we 
encountered far more deep learning papers analyzing all three data types regarding PDAC 
compared to transfer learning.  

CT Scan 
 
3.1 CT Scan Overview 
CT scans show a detailed image of the body, including bones, muscles, fat, organs, and blood 
vessels, and are often more detailed than X-ray images. This technology enables the 
combination of image slices into 3D models, allowing for better visualization of internal 
structures. This improves diagnostic accuracy and enhances surgical planning with precise 

8 



anatomical representations. There are two main variants of CT Scans: contrast versus 
non-contrast. Contrast CT scans is when a contrasting agent, typically iodine-based, is injected 
into a patient's bloodstream before scanning. The contrast agent contains a substance that can 
absorb the X-rays used in CT scans to make organs more visible on the computerized image. 
Due to the pancreas’ location behind other organs, it needs contrast for doctors to study it. 
Non-contrast CT scans, on the other hand, use no agent. The CT scan is one of the most 
common methods of PDAC detection, hence the large quantity of sources available. Large 
datasets containing many CT scans are often used to train transfer learning models. These 
datasets comprise images labeled to indicate the presence or absence of pancreatic tumors. 
Each image is associated with metadata detailing patient demographics and clinical information. 
The data is organized into training and validation sets to facilitate model development and 
assessment. PDAC, as visualized below in Figure 2, illustrates the challenge of distinguishing it 
from healthy tissue due to its subtle visual differences and complex tumor microenvironment. 
 

 
Figure 2. PDAC CT Scan Example 
An abnormal pancreatic CT scan with a red region denoting PDAC and yellow regions denoting 
normal pancreas tissue. This image highlights the difficulty of distinguishing cancerous 
pancreatic regions from non-cancerous ones with the human eye. This image is from Figure 1 of 
the study: Segmentation of PDAC and surrounding vessels in CT images using deep 
convolutional neural networks and texture descriptors.47 

 
 
3.2 Studies 
The following 11 studies focused on CT scan data type and whether it was transfer or deep 
learning. These are a representative sample, splitting the studies into 5 transfer learning-based 
and 6 deep learning-based studies. The transfer learning studies leverage pre-trained models to 
enhance diagnostic accuracy and predictive performance, particularly in cases with limited data 
availability. These approaches demonstrate the effectiveness of transfer learning in refining 
prognostic assessments, segmentation of medical images, and improving early cancer 
detection. Conversely, deep learning studies implement custom-built neural networks trained 
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from scratch to identify patterns within extensive datasets. Both deep learning and transfer 
learning models have been employed to analyze PDAC CT scans, demonstrating varying 
performance levels while showcasing significant potential for future applications, such as early 
prediction of PDAC. 
 
Table 6. Studies focused on the data type of CT scans. 

Study Type of 
Learning 

Data Model Performance Key Takeaways 

Zhang 
et al. 
202027 

Transfer 
Learning 

3 cohorts: 
422 NSCLC 
patients, 68 
PDAC 
patients, 30 
independent 
PDAC 
patients 

CNN-base
d survival 
model 

Concordance index: 
0.651 compared to 
0.491 in 
radiomic-based 
models, Index of 
prediction accuracy: 
11.81% compared to 
3.80% in 
radiomic-based 
models 

Outperformed 
radiomic-Cox 
models, effective 
in small PDAC 
cohorts 

Zhang 
et al. 
202128 

Transfer 
Learning 

2 cohorts: 
68 PDAC 
patients, 30 
independent 
PDAC 
patients, 
1428 
radiometric 
images 

CNN-base
d survival 
model 

AUCs: 0.60 (PCA, 
Boruta), 0.55 (CPH), 
0.50 (LASSO); Risk 
score-based method 
AUC: 0.84; High 
correlation coefficient 
>0.70 

Transfer learning 
improves 
prognostic 
performance with 
limited data 

Kotha
wade 
et al. 
202429 

Transfer 
Learning 

4080 labeled 
CT images, 
3289 
manually 
verified from 
Kaggle 

Deep 
Learning 
CNN 
 
Transfer 
Learning 
YOLO 

F1-score values of 1 
and 0.99 

Enhances tumor 
detection 
accuracy while 
reducing 
computational 
costs 

Zhu et 
al. 
202330 

Transfer 
Learning 

104 PDAC 
patients, 
dual-phase 
imaging 
from 
Changhai 
Hospital of 

CycleGAN
, U-Net 

Dice: 81.57%, IoU: 
71.35%, Sensitivity: 
84.32%, Specificity: 
99.86% 

High 
segmentation 
accuracy, 
surpassing 
benchmarks in 
pancreatic 
imaging 
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Naval 
Military 
Medical 
University 

Kim et 
al. 
202431 

Transfer 
learning 

3058 CT 
reports from 
South Korea 
& USA 

ClinicalBE
RT 

Initial: 
C-index of 0.653 
AUROC of 0.722 
 
Trained on up to 15 
consecutive reports: 
C-index of 0.811 
AUROC of 0.888 

Deep transfer 
learning improves 
survival prediction 
from CT reports 

Chhika
ra et 
al. 
202432 

Deep 
Learning 

scRNA-seq 
data from 61 
PDAC, 16 
non 
malignant 
pancreatic 
tissues 
(174,394 
cells) 

MobileNet MobileNet + GMAp 
(LR = 0.001) 
achieved 98.16% 
accuracy, F1 score, 
and recall, with 
98.17% precision. 
Accuracy improved 
by 3.66% over 
machine learning 
and 16.16% over 
deep learning 
3-class classification. 

Transfer learning 
improves early 
pancreatic cancer 
detection 

Chen 
et al. 
202333 

Deep 
learning 

1279 
contrast-enh
anced CT 
scans (546 
pancreatic 
cancer, 733 
controls) 

segmentat
ion CNN 

89.9% sensitivity and 
95.9% specificity on 
an internal test set 
and 89.7% sensitivity 
and 92.8% specificity 
in real-world 
validation 
 
sensitivity of 74.7% 
for tumors smaller 
than 2 cm 

Effective 
pancreatic cancer 
detection, even for 
small tumors 

Cao et 
al. 
202334 

Deep 
learning 

3208 
patients 
(training), 
6239 
(validation 
across 10 
centers), 

PANDA AUC of 0.986-0.996 
 
identification and 
achieved 92.9% 
sensitivity and 99.9% 
specificity in 
real-world testing 

Outperformed 
radiologists by 
34.1% in 
sensitivity, 6.3% in 
specificity 
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20,530 
real-world 
cases 

Gandik
ota et 
al. 
202335 

Deep 
Learning 

500 samples 
(two 
classes) 

W-Net + 
GhostNet 
+ Deep 
Echo 
State 
Network 

Accuracy: 
96.98–99.02%, 
Precision: 
97.18–99% 

TSADL-PCSC 
approach 
outperforms 
existing methods 

Ramae
kers et 
al. 
202436 

Deep 
Learning 

290 CT 
images (98 
controls, 99 
adenocarcin
oma 
patients) 

3D U-Net Specificity: 0.86, 
AUROC: 0.99; 
AUROC for tumors 
<2 cm: 0.98 

AI improves early 
pancreatic cancer 
detection, 
enhancing survival 
prospects 

Alves 
et al. 
202237 

Deep 
Learning 

242 internal 
PDAC 
patients, 361 
external 
patient 
datasets 

nnANet (3 
configurati
ons) 

nnUNet_MS 
performed best, 
achieving an 
AUC-ROC of 0.91 on 
external datasets 
and 0.88 for tumors 
under 2 cm 

Deep learning 
enhances PDAC 
detection and 
diagnostic 
accuracy 

 
 
3.3 Data Overview 
The datasets in the studies mentioned in table 6 were used for training, validating, and testing 
the models. They come from various sources, including publicly available data, private hospital 
records, Kaggle repositories, and research-specific collections. While some datasets, such as 
the non-small cell lung cancer (NSCLC) dataset27,28 and Kaggle repositories,29 are publicly 
accessible,32,35–37 others, including various hospitals30–32,34–37 and private setting33 datasets, 
remain unpublished. 
 
Many datasets are pre-labeled with tumor presence and metadata, while others consist solely of 
raw CT scans. CT imaging is often integrated with metadata, such as patient demographics and 
clinical history, to develop survival prediction models. Public datasets were predominantly used 
for pretraining models, whereas private datasets were used to evaluate model accuracy and 
applicability across different studies.  
 
Transfer learning studies typically use smaller PDAC-specific datasets for fine-tuning and 
validation, relying on larger unrelated datasets for pre-training.27–31 Deep learning studies, on the 
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other hand, require significantly larger datasets for direct training and validation, often sourced 
from private hospitals or multicenter collaborations.31,33,34 
 
 

 
 
Figure 3. CT Scan Datatype Best Calculated AUC Score 
Shows the Best AUC score of Deep Learning, Transfer Learning, and AI algorithms in their 
respective study based on CT scans. 
Note: All used different datasets and models 
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Figure 4. Shows Sensitivity and Specificity Comparison among different models of both transfer 
and deep learning. 
 

 
Figure 5. Shows F1 Score comparison between a transfer and a deep learning model 
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Figure 6.  Shows model’s respective C-Index and IPA between transfer learning and 
radiomics-based models 
 
3.4 Transfer Learning Results 
This section explores the effectiveness of transfer learning-based models for various medical 
applications, specifically focusing on pancreatic cancer detection and survival prediction. 
Convoluted Neural Network-based transfer learning models have outperformed traditional 
radiomics-based models commonly used in clinical research. Radiomics-based models are 
models that use quantitative features extracted from medical images to analyze a disease. 
Figure 6 shows transfer learning models outperforming radiomic based models. The IPA tripled 
when applying CNN-based transfer learning, and the concordance index exceeded 60%.27 In 
addition, transfer learning approaches, like the You Only Look Once (YOLO) model, have also 
shown remarkable precision and sensitivity in identifying pancreatic cancer.29 In segmentation, 
transfer learning helps focus on pancreatic cancer regions while excluding unrelated areas, 
achieving comparable results to methods like CycleGAN.30 This approach improved key 
metrics—Dice Similarity Coefficient, Intersection over Union, and Sensitivity—by nearly 2%.30 
Cutting-edge applications like using a transfer learning model built on NLP to predict survival 
based on narrative CT scan reports achieved an AUROC of 0.911 across multiple datasets from 
different countries, meaning the model demonstrated strong predictive performance in 
distinguishing between patients who survived and those who did not.31 These findings highlight 
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the growing impact and potential of transfer learning in advancing medical image analysis and 
prediction models. 
 
Transfer learning-based CNN models were the most commonly used for disease classification in 
four of the studies. CNNs are well suited for feature extraction and classification, helping cancer 
detection through comparing abnormalities between images. This has been the standard based 
model for transfer learning-based approaches ranging in studies from 2020 to 2024. However, 
new architectures have evolved to make cancer detection more accurate and efficient. Some of 
the newer models include CycleGAN, which can enhance images to make them look more 
similar to one another. This is useful when you have data from multiple sources. Transfer 
learning-based models have also leveraged NLP, including ClinicalBert, allowing for the model 
to learn from medical reports, just like a doctor would. The functional versatility of these models 
supports the broad applicability of transfer learning in various pancreatic cancer detection tasks. 
 
Transfer Learning models have shown promising performance compared to that of Deep 
Learning as seen in Figure 3 with AUC scores of all models consistently above 0.8. Figure 4 and 
Figure 5 also show this trend between transfer and deep learning models where we see transfer 
learning models obtaining high specificity, sensitivity, and F1 scores matching that of deep 
learning.  
 
Transfer learning has shown substantial promise in medical imaging compared to the current 
gold standard of doctor analysis. Real-life human doctors must rely on their clinical expertise, 
patient history, and available imaging to make diagnoses. While highly skilled, the accuracy of 
human radiologists can be affected by limitations in training, the availability of data, and human 
error, especially when identifying smaller tumors or in challenging regions like the pancreas. 
While deep learning models like PANDA offer valuable insights, transfer learning has 
demonstrated comparable effectiveness, reinforcing its utility in pancreatic cancer detection. In 
multi-center validation studies, the PANDA model outperformed radiologists in PDAC detection, 
achieving a 14.7% higher sensitivity and a 6.8% higher specificity.34 With such results as shown 
by PANDA, transfer learning has strong potential in PDAC detection that can assist human 
doctors. 

Ultrasound 
4.1 Ultrasound Overview 
Ultrasound is a noninvasive imaging test usually used as a first scan or test when looking at 
PDAC. Ultrasound uses high-frequency sound waves to create real-time pictures or videos of 
internal organs or other soft tissues, such as blood vessels. A probe transmits sound waves into 
your body and converts these waves into electrical signals, which are converted into a live 
image. For PDAC, one would get an abdominal ultrasound to detect the pancreas region. Since 
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ultrasound is a first-level imaging test, most doctors do not consider it definitive evidence for 
diagnosing PDAC. Due to its limited role as conclusive proof, research on using ultrasound 
scans as a primary data type for PDAC is scarce, particularly in the context of transfer learning 
approaches. The other ultrasound technique we decided to use was EUS because it obtains 
higher-resolution images, which increases the likelihood of tumor detection. Even with its high 
resolution, as seen in Figure 7, detecting cancerous pancreatic regions remains a huge 
challenge for doctors and the naked eye. 
 

 
Figure 7. PDAC EUS Scan Example 
An abnormal pancreatic EUS scan with the blue line outlining hard areas, the yellow line 
outlining soft areas, and the white line outlining the tumor. Doctors measure the stiffness of 
tissue when detecting cancerous regions. This image highlights the difficulty of distinguishing 
cancerous pancreatic regions from non-cancerous ones with the human eye. This image is from 
Figure 2 of the study: The role of EUS elastography-guided fine needle biopsy in the histological 
diagnosis of solid pancreatic lesions: a prospective exploratory study.45 
 
 
 
4.2 Ultrasound Studies 
The following four studies focused on the ultrasound data type and whether it was transfer or 
deep learning. We considered these to be a representative sample, dividing the studies into two 
based on transfer learning and two based on deep learning. 
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Table 7. Studies focused on the datatype of ultrasound, using deep learning or transfer learning 

Study Type of 
Learning 

Data Model Performance Key Takeaways 

Cheng et 
al. 201738  

Transfer 
Learning 

5,518 
grayscale 
ultrasound 
images from 
185 studies, 
labeled into 11 
categories 

CaffeNet- 
modified 
AlexNet; 
VGGNet- 
16-layer CNN; 
Both 
pre-trained on 
ImageNet, 
retrained FC 
layers 

CaffeNet: 77.3% 
accuracy, 90.4% 
top-2 accuracy; 
VGGNet: 77.9% 
accuracy, 89.7% 
top-2 accuracy; 
both 
outperformed 
radiologists 
(71.7%) 

Transfer 
learning 
enhances 
medical imaging 
analysis, 
outperforming 
human experts 
with limited 
labeled data. 

Baldota 
et al. 
202139 

Transfer 
Learning 

9,213 
ultrasound 
images 
converted 
from 
endoscopic 
videos, 
manually 
segmented 

DenseNet201, 
pre-trained on 
ImageNet(pre-t
rained, 
fine-tuned for 
task) 

99.88% 
accuracy, 0.9988 
sensitivity, 
0.9993 
specificity, 
misclassified 
only 12 images 

DenseNet201 
shows promise 
for real-time 
computer-aided 
diagnosis in 
ultrasound 
imaging. 

Tian et 
al. 202240    

Deep 
Learning 

1,213 EUS 
images from 
157 patients 
(Pancreatic 
Cancer & 
Non-Pancreati
c Cancer 
conditions) 

YOLOv5m 
(trained for 
300 epochs) 

Precision of 
0.713, recall of 
0.825, mean 
average 
precision 
(mAP@0.5) of 
0.831; AUC of 
0.85(comparable 
to the 0.838 AUC 
achieved by 
physicians)  

YOLOv5m 
supports 
real-time 
pancreatic 
lesion detection 
in EUS, aiding 
clinical 
decision-making
. 

Saravia 
et al. 
202441  

Deep 
Learning 

126,000 EUS 
images from 
378 exams 
across four 
international 
centers 

Trinary CNN: 
Normal vs. 
non-mucinous 
pancreatic 
cystic 
neoplasms vs. 
mucinous 
pancreatic 
cystic 

Accuracy: 99.1% 
(Normal), 99.0% 
(MPCN), 99.8% 
(NMPCN), 
Differentiation: 
94.0% (PDAC 
vs. PNET) 

First global CNN 
model for 
pancreatic 
cystic and solid 
lesion detection, 
leveraging 
diverse datasets 
to minimize 
bias. 
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neoplasms 
 
 
4.3 Data Overview 
The datasets in the studies mentioned in Table 7 were used for training, validating, and testing 
the models. They come from various sources, including clinical studies,39 private institutions,38,41 
and hospitals40 all of which are unpublished. All the studies required researchers to manually 
label data.38–41 The data ranged globally across the studies, with some studies getting their data 
from multiple hospitals or research centers,39,41 while others only used data from one source.38,40 
The diversity in data sources helped mitigate demographic bias and improve the robustness of 
the models in diagnosing pancreatic diseases. Despite variations in dataset sizes and sources, 
a consistent preprocessing step across studies involved resizing images to 256×256 pixels to 
standardize input data for transfer learning models.38,39 
 

 
Figure 8. Ultrasound Data Type Model Best Accuracy 
Comparison of accuracy between different ultrasound transfer learning models, both transfer 
learning and deep learning based, compared to human radiologists. Note: DenseNet used 
different data than CaffeNet, VGGNet, and the Human Radiologists 
 
4.4 Transfer Learning Results 
The results of transfer learning across these studies highlight its effectiveness in medical 
imaging in PDAC and other pancreatic disease detection. By leveraging pre-trained 
convolutional neural networks such as VGGNet, CaffeNet, and DenseNet201, models achieved 
high classification accuracies, often surpassing human performance.38,40 For example, VGGNet 
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outperformed radiologists in classifying abdominal ultrasound images,38 while DenseNet201 
achieved near-perfect accuracy (99.9%) in distinguishing pancreatic conditions.40 Similarly, deep 
learning models trained on EUS images, such as YOLOv5m and CNN-based classifiers, 
demonstrated strong performance matching that of transfer learning.40,41 For example, when 
tasked with identifying and differentiating pancreatic lesions, CNN-based classifiers achieved 
precision levels exceeding 90% in most cases and effectively distinguished different pancreatic 
conditions.41 The ability to fine-tune pre-trained models on relatively small but well-annotated 
datasets has proven highly effective, reducing the need for large-scale labeled data while 
maintaining high diagnostic accuracy. Figure 8 demonstrates that transfer learning models 
consistently outperform human radiologists and perform competitively with, or even surpass, 
deep learning models in terms of accuracy. 
 

Cell Biopsy 
5.1 Cell Biopsy Overview 
A biopsy is an invasive procedure and the current human gold standard to confirm many types 
of cancers, including PDAC. Cell biopsies are currently the only way to validate cancer 
confirmation for a majority of cancers, as doctors remove a piece of tissue or a sample of cells 
from the body to be tested in a laboratory.44 Because doctors have to confirm cancers 
themselves from cell biopsies, the use of the transfer learning approach on cell biopsies isn’t as 
effective and is rather redundant. For this reason, there are limited sources that cover this 
approach. Figure 9 below is an example of a cell biopsy for PDAC. 
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Figure 9. PDAC Cell Biopsy Example 
An abnormal pancreatic cell biopsy with the arrows pointing toward the tumor and its growth, the 
black stars indicate cancerous cell regions, and the pink area is the stroma. This image 
highlights the difficulty of distinguishing cancerous pancreatic regions from non-cancerous ones 
with the human eye. This image is from Figure 1 of the study: A deep learning model to detect 
pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy.46 
 
5.2 Studies 
The following two studies focused on cell biopsy data and were categorized based on their 
methodological approach: transfer learning or deep learning. We selected these studies as 
representative examples. 
 
Table 8. Studies focused on the Datatype of Cell Biopsies. 

Study Type of 
Learning 

Data Model Performa
nce 

Key Takeaways 

Kronberg et 
al. 202242 

Transfer 
Learning 

223 PDAC & 
161 healthy 
tissue spots 
(1 per 

ResNet18 
CNN 

94% 
accuracy, 
90% 
weighted 

Communicator-driven 
preprocessing improved 
label refinement and 
model accuracy for PDAC 
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patient) F1-score detection 

Saillard et 
al. 202343 

Deep 
Learning 

202 training 
patients, 
validated on 
598 across 
four cohorts 

PACpAInt AUC 
0.71-0.9 

Effective subtype 
classification, prognostic 
value, and detection of 
intratumor heterogeneity, 
including minor aggressive 
and transitional tumors 

 
 
5.3 Data Overview 
The datasets in the studies mentioned in Table 8 were used for training, validating, and testing 
the models. Both used data from hospitals,42,43 which were private, however, one also used a 
public dataset43 in a published repository. Both studies required researchers to manually label 
the data.42,43 Kronberg’s study used tissue cell data,42 while Saillard’s study used RNAseq data.43 
Despite variations in dataset sizes and sources, a consistent preprocessing step across studies 
involved resizing images to 224×224 pixels to standardize input data for their respective 
models.42,43 
 
5.4 Transfer Learning Results 
Given the limited number of studies available, no generalizable conclusions can be drawn. 
Further research is needed on cell biopsy data. 

Discussion 
6.1 Comparisons 
Transfer learning-based CNN models were the most commonly used for disease classification 
being used in 6 studies. CNNs are well-suited for feature extraction and classification, facilitating 
cancer detection by comparing abnormalities between images. This has been the standard 
based model for transfer-learning based approaches in studies from 2020 to 2024. However, 
new architectures have evolved to make cancer detection more accurate and efficient. Some of 
the newer models include CycleGAN, which can enhance images to look more similar to one 
another, which is useful when one has data from multiple sources. Transfer learning-based 
models have also leveraged NLP, including ClinicalBert, allowing for the model to learn from 
medical reports, similar to how a doctor would. These models have varying functions suited for 
different tasks, allowing transfer learning to be applicable in a wide range of pancreatic cancer 
detection applications. 
 
CT Scan, Ultrasound, and Cell biopsy-focused studies have shown positive trends of using 
transfer learning, showing results that are on-par with that of deep learning. With the limited 
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studies, transfer learning initially has shown better diagnosis results than human performance, 
including accuracy, especially when detecting tumors smaller than 2 cm. The amounts of data 
that Ultrasound studies used for training, validating, and testing the models were far greater 
than that of CT scans and cell biopsies. However, there were more studies done on the CT scan 
data type compared to the other two, making it the most prominent field in which transfer 
learning has potential. All three data types show that transfer learning has a positive outlook, 
with AUC scores all above 0.7 and high percentage accuracy. They also show how transfer 
learning has many potential uses in detecting PDAC, including survival models, classification, 
and predictions. 
 
6.2 Limitations 
The largest issue many of the studies encountered was either the lack of data or a relevant 
pre-trained model. As stated before, insufficient amounts of data can lead to bias or inaccurate 
results, limiting the overall reliability of the findings. We believe that making PDAC data, 
especially CT scans, more publicly available would greatly benefit this field by advancing 
research and enhancing the development of transfer-learning detection models. Additionally, the 
lack of relevant pre-trained models poses a challenge, as existing models aren’t suited for 
transfer learning on PDAC. Most existing pre-trained models in medical imaging are trained on 
general radiology datasets (e.g., chest X-rays, brain MRIs) rather than CT scans, which have 
unique features that aren’t captured but are necessary for cancer detection in such a hidden 
organ. This results in models extracting information that isn’t relevant to PDAC detection, 
compromising performance and usefulness. Lastly, as the AI field continues to advance, a lack 
of public trust can hinder the adoption of transfer-learning based PDAC detection results even if 
they perform better compared to humans.  To address this, it’s crucial to provide clearer 
validation studies while fostering collaboration and transparency between researchers, 
clinicians, and patients. 
 
6.3 Future Directions 
As transfer learning PDAC detection continues to evolve, future research should focus on 
refining current methodologies and addressing existing limitations to enhance clinical 
applicability. To address the lack of data, we suggest that researchers generate high-quality 
synthetic data, which helps mitigate the lack of real-world PDAC datasets, including creating 
realistic CT scans to train models. Synthetic data still creates realistic data but doesn’t require 
private institutions to give personal data away. Another way to enhance transfer learning 
approaches is to combine them with other forms of learning like few-shot learning. Few-shot 
learning enhances model performance by utilizing prior knowledge from related tasks, despite 
requiring only a minimal number of labeled examples. Combining few-shot learning with transfer 
learning could help AI models generalize better for PDAC detection, especially when past 
studies have shown that data is extremely scarce. As for models, utilizing pre-trained models 
from cancers with similar imaging characteristics (e.g., liver, pancreatic, or gastrointestinal 
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cancers) can enhance PDAC detection when domain-specific datasets are scarce. This 
approach can help extract more relevant features and improve generalization. For transfer 
learning to truly advance, practical implementation is key. 
 
All of the studies reviewed in this analysis are experimental in nature, meaning they were 
conducted in controlled research settings and primarily involve preclinical or early-stage 
investigative methodologies. To date, none of these studies have undergone validation through 
large-scale, peer-reviewed clinical trials, and thus their findings should be interpreted with 
caution until further clinical evidence is established. However, from the initial positive outlook on 
the use of transfer-learning-based approaches for PDAC detection, we suggest that researchers 
start bridging the gap between research and real-world clinical applications. Achieving clinical 
integration will require rigorous validation, alignment with regulatory standards, and performance 
evaluation using real-world patient data. These transfer-learning-based models must be 
interpretable, user-friendly, and aligned with clinical guidelines to gain trust and adoption among 
healthcare professionals. One way to go about this is to compare doctor analysis with 
transfer-learning model analysis and see how their performance compares and in which areas 
the model or human does better. Additionally, this comparative analysis can help identify specific 
strengths and weaknesses of the model, guiding further improvements. By continuously refining 
these models through real-world feedback and aligning them with established clinical workflows, 
transfer learning-based PDAC detection can become a valuable tool that will improve diagnostic 
accuracy and patient outcomes. This approach may facilitate broader data availability and 
further advancement in transfer learning-based PDAC detection models. 

Conclusion 
Transfer learning has demonstrated significant promise in the detection and analysis of 
Pancreatic Ductal Adenocarcinoma (PDAC). By leveraging pre-trained models, transfer learning 
has been proven to enhance diagnostic accuracy, reduce data requirements, and improve 
computational efficiency compared to traditional deep learning approaches. Our review 
highlights its effectiveness across multiple imaging modalities, including CT scans, ultrasound, 
and cell biopsies, with CT scans being the most widely studied and most promising application. 
Despite these advancements, there still exist many limitations, including the lack of high-quality 
datasets and the need for more specialized pre-trained models for PDAC detection. Moving 
forward, it is essential that researchers enhance model interpretability, publicize data, and 
increase public trust to open a new doorway of using AI technology to better detect PDAC and 
save lives. 
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