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Abstract 

Artificial Intelligence (AI) encompasses a broad spectrum of techniques, ranging from classical search 
algorithms and heuristics to more advanced machine learning and deep learning models. To find the 
solution for popular game problems, the choice of the appropriate AI method depends on the nature of the 
problem being addressed. For well-defined, rule-based problems such as turn-based games like 
Tic-Tac-Toe or Connect 4, classical algorithms like Minimax and Monte Carlo Tree Search (MCTS) are 
highly effective due to their ability to explore finite state spaces and make optimal decisions. However, 
for more dynamic and complex problems, such as those encountered in sports analytics or real-time 
decision-making, advanced machine learning techniques such as Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) networks are more effective 
to capture intricate patterns and handle unstructured data. Despite the growing capabilities of deep 
learning, simpler methods like heuristic-based optimization and statistical techniques such as curve fitting 
and K-nearest neighbors (KNN) can still be highly effective in certain domains. This paper explores the 
strengths, weaknesses, and effectiveness of various AI techniques and develops guidelines on how to 
select the right approach based on problem complexity and data characteristics. Through case studies of 
different popular games, we demonstrate how different AI methods can be applied to real-world 
problems, and how hybrid approaches can often provide the best solution for complex tasks. 

 

 

Introduction 

Artificial intelligence (AI) has revolutionized numerous fields by providing computational methods to 
solve increasingly complex problems. These AI techniques span a diverse range of approaches, each 
suited to specific types of challenges. For popular games with well-defined structures, such as traditional 
board games like Chess and RISK, classical search algorithms and heuristics are often the most effective 
solutions. These problems are characterized by finite state spaces in which the goal is to optimize 
decisions based on clear rules and strategies. Algorithms like Minimax and Monte Carlo Tree Search 
(MCTS) are particularly adept at navigating these scenarios [1], [2]. 

However, as problems become more dynamic and data-driven, such as those encountered in sports 
analytics or real-time decision-making scenarios, traditional algorithms begin to fall short. In these more 
complex, unstructured environments, machine learning (ML) and deep learning techniques, including 
models like Long Short-Term Memory (LSTM) networks, provide the flexibility and power needed to 
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analyze large datasets, learn patterns over time, and make predictions under uncertainty [3], [4]. These 
techniques excel in domains where data is less structured and involves temporal dependencies, such as 
predicting player performance in sports [5]. 

In this paper, we explore how various AI techniques—from classical algorithms like Minimax and MCTS 
to modern machine learning models—can be effectively applied to solve different kinds of problems. By 
examining case studies from RISK (a classical strategy board game) and CourtSightML (a machine 
learning model for sports analytics), we highlight the strengths and weaknesses of both traditional and 
modern AI approaches. We also discuss how these methods can be combined to address more complex, 
real-world challenges, illustrating the versatility of AI techniques across a range of domains. 

 

AI Techniques for Problem Solving: A Comparative Overview 

Classical AI Techniques: Search Algorithms and Heuristics 

Classical AI techniques are foundational to the development of problem-solving methods, particularly in 
domains that involve structured decision-making or well-defined rules. These methods include search 
algorithms and heuristics, which are commonly applied in games and decision-making scenarios with 
finite state spaces and clear objectives. Despite the rise of more complex AI approaches, such as deep 
learning, these classical techniques remain highly effective for certain problem domains due to their 
simplicity, interpretability, and efficiency when applied in appropriate contexts. 

Table 1. Strengths and limitations of selected AI algorithms 

Algorithm Description Strengths Limitations 

Minimax AI algorithm for 
two-player games; uses 
a game tree to evaluate 
and select optimal 
moves. 

● Guarantees 
optimal play in 
deterministic 
environments. 

● Simple to 
implement. 

● Computationally 
expensive for large 
state spaces. 

● Struggles with 
incomplete 
information. 

Monte Carlo Tree Search 
(MCTS) 

Probabilistic algorithm 
for large state spaces; 
uses random 
simulations to refine 
decisions. 

● Efficient in 
large decision 
spaces. 

●  Handles 
uncertainty 
well. 

● Computationally 
demanding for 
real-time decisions. 

● Slower in dynamic 
environments. 

K-Nearest Neighbors Classification algorithm ● Simple and easy ● Computationally 
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(KNN) using similarity to prior 
examples for 
decision-making. 

to implement. 
● Adaptable to 

various 
problems. 

expensive with large 
datasets. 

● Sensitive to noisy 
data. 

Classification Algorithms Techniques like 
decision trees, SVM, 
and logistic regression 
for pattern recognition. 

● Transparent 
decision-makin
g (e.g., decision 
trees). 

● Flexible for 
various data 
types. 

● Prone to overfitting. 
● Struggles with 

high-dimensional data 
without proper 
regularization. 

 

Machine Learning: A Shift to Data-Driven Models 

While classical AI techniques such as search algorithms and heuristics are highly effective for structured, 
well-defined problems, modern applications increasingly involve vast amounts of data and complex, 
dynamic systems. These scenarios require more adaptable and powerful models that can learn from data 
rather than relying on predefined rules. Machine learning (ML) provides such an approach by leveraging 
data-driven models to identify patterns, make predictions, and optimize decision-making [6]. Among the 
various ML techniques, neural networks and genetic algorithms stand out as particularly versatile tools for 
solving real-world problems across different domains [9]. Neural networks, especially deep learning 
models, are widely used in tasks such as speech recognition, computer vision, and natural language 
processing, while genetic algorithms are applied to problems involving optimization and search, such as 
engineering design and resource allocation [6], [9]. These methods are particularly useful in environments 
where traditional AI struggles with unstructured data and evolving contexts. 

While there are other types of Neural Networks and Machine Learning algorithms, for the purposes of this 
paper, we focus on the following: 

Table 2. Different Types of Neural Networks 

Algorithm/Model Description Strengths Limitations Applicable 
Games 

Recurrent Neural 
Networks (RNNs) 

Models designed 
to handle 
sequential data 
by maintaining 
memory of 
previous inputs. 

● Excels in 
time-series and 
sequential 
prediction tasks. 

●  LSTMs are ideal 
for modeling 

● Requires large 
datasets.  

● Computationally 
expensive.  

● Struggles with 
rare or extreme 

Sports 
Analysis, 
RPGs, 
Dynamic 
Simulations 
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LSTMs (Long 
Short-Term 
Memory 
networks) are a 
specialized type 
of RNN that 
captures 
long-term 
dependencies 
effectively. 

long-term 
dependencies 
and complex 
temporal 
patterns. 

events. 

Convolutional 
Neural Networks 
(CNNs) 

Primarily for 
image 
recognition and 
processing spatial 
data. 

● Automatically 
learns 
hierarchical 
spatial features.  

● Effective for 
structured data 
like images or 
grid-based 
games. 

● Requires large, 
labeled datasets.  

● Limited to 
structured data; 
less useful for 
non-spatial 
input. 

Go, Chess, 
Checkers, 
Visual Board 
Games 

Feedforward 
Neural Networks 
(FNNs) 

Processes data 
from input to 
output without 
recurrence or 
convolutional 
layers. 

● Simple to 
implement.  

● Effective for 
non-sequential, 
non-spatial tasks. 

● Limited for 
sequential or 
spatial data.  

● Performance is 
often lower 
compared to 
specialized 
models like 
CNNs or RNNs. 

Strategy 
games, 
Classification 
tasks 

 

Case Study I: RISK and the Application of Search Algorithms 

In this paper, we offer a case study of creating an AI agent to play near-optimal moves in the board game 
of RISK, demonstrating how classical AI techniques can be applied to increasingly complex problems. 
RISK is a strategy game that requires players to take turns attempting to capture territories on a world 
map by using military forces to engage in battles and conquer opposing territories. The game’s rules and 
objectives are relatively simple, yet the complexity emerges from the strategic planning, negotiation, and 
probabilistic outcomes that occur throughout the game. 
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Overview of RISK: A Strategic Board Game 

Similar to the popular board game Monopoly, RISK is a turn-based game. The primary goal in RISK is to 
control territories on a map and gradually eliminate opposing players by capturing their territories. Each 
player starts with a set number of armies placed on various territories, and during each turn, players must 
decide how to allocate their forces and attack or fortify territories. 

The game involves several key components: 

● Territories: The board is divided into regions (territories) grouped into continents. Each player 
controls a set of territories and must use them to launch attacks, defend against other players, and 
acquire more territories. 

● Armies: Each player’s military forces are represented by a number of armies. These armies can be 
deployed on any controlled territory to attack or defend. 

● Battles: When players engage in attacks, the outcome is based on dice rolls, introducing an 
element of chance into the game. The attacker rolls dice to determine the strength of the attack, 
while the defender rolls to resist the attack. The dice rolls introduce an inherent uncertainty, 
making strategy and tactics crucial to success. 

● Reinforcements: At the beginning of each turn, players receive additional armies based on the 
number of territories they control, which further complicates decision-making by providing 
opportunities to reinforce defenses or prepare for attacks. 

● Goal: The ultimate goal of RISK is to eliminate all other players and take control of the entire 
world map, but this requires not just careful planning but also adapting to the constantly shifting 
state of the game. 

Challenges in Creating an AI for RISK 

At first glance, RISK may appear to be a relatively straightforward game, but its complexity arises from 
the need to balance several strategic and tactical objectives: 

1. Territory Control and Expansion: Players must manage their territory and determine which 
areas to expand into. Expanding too quickly can overextend a player’s forces, while too little 
expansion can leave a player vulnerable. 

2. Resource Management: Reinforcements are earned based on the number of controlled territories, 
but this also means that spreading too thinly across the board can prevent players from 
maximizing reinforcements. 

3. Battle Strategy: The random nature of dice rolls means that players must carefully decide which 
battles to engage in and how to distribute their forces. Additionally, knowing when to fight and 
when to fortify defenses requires deep strategic thinking. 
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4. Opponent Behavior: Predicting the actions of opponents is one of the most difficult aspects of 
RISK, as players must try to predict how others will react to shifts in territory control, battle 
outcomes, and strategic moves. 

These factors make RISK a more complex game than it initially seems, requiring advanced strategic 
decision-making. The inherent randomness of the dice rolls complicates things further, requiring the AI to 
consider not only the best possible outcomes based on available data but also to factor in the probabilistic 
nature of battles. 

Applying Classical AI to RISK 

To handle the strategic depth of RISK, we turn to classical AI techniques. One of the most effective 
algorithms for such strategy games is Minimax, which uses a decision-tree structure to evaluate the 
potential outcomes of different moves. Minimax works by assuming that both players will act rationally 
and will try to maximize their own benefit while minimizing their opponent's. It evaluates all possible 
moves in a tree-like structure and selects the optimal one based on these evaluations. However, Minimax 
relies on a fully (or mostly fully) defined game state space, and with the complexity of RISK, such an 
approach becomes computationally expensive, especially due to the large number of possible 
configurations of the game state [7]. 

In contrast, Monte Carlo Tree Search (MCTS) is more suited to handle the dynamic and uncertain aspects 
of RISK. MCTS doesn’t require full knowledge of the game’s state and excels at exploring large decision 
spaces by simulating possible future game states. It is particularly effective in games like RISK, where 
uncertainty, such as the randomness of dice rolls, plays a significant role. MCTS works by running 
simulations (or rollouts) to predict the outcomes of different actions, refining its evaluation of potential 
moves over time [4]. This ability to simulate and adapt to uncertainty makes MCTS a powerful tool for 
games like RISK, where probabilistic elements heavily influence gameplay outcomes. 

In our case study, we designed an AI agent that uses MCTS to evaluate possible moves in RISK by 
simulating a series of games, iteratively improving its decision-making through the exploration of various 
game states. This agent evaluates potential moves by considering: 

● The game state (current territories controlled, number of armies, etc.). 
● The probable outcome of attacking certain territories. 
● Potential strategies for fortifying defenses or preparing for the opponent’s next moves. 

Using MCTS for Strategic Decision-Making in RISK 

MCTS is particularly suited for handling the uncertainty and large state space in RISK because it focuses 
on simulation-based exploration rather than exhaustive tree searches. The basic idea behind MCTS is to 
randomly simulate several possible game scenarios (called rollouts) from a given state, evaluating the 
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likelihood of winning from those scenarios. These simulations help the AI agent prioritize moves based 
on the expected outcome over multiple simulations. 

 

 

Figure 1: Overview of the MCTS Algorithm. By Robert Moss. Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=111182752 

 

Through repeated iterations, the AI becomes better at selecting moves that maximize its chances of 
success in RISK, even when faced with complex, dynamic decision-making. 

Implementation 

The goal of this implementation of MCTS was to create an AI agent that chooses well-known RISK 
strategies based on the current board state, opportunities to attack, and the relative safety of the current 
position, among other factors. In this approach, MCTS, or more specifically, DL-MCTS (Depth-Limited 
MCTS), is used for a heuristic-based analysis of the current position. This involves utilizing a UCT 
(Upper Confidence Bound for Trees) strategy, as well as incorporating it into the final position evaluation 
calculation, which ultimately determines which strategy to employ [7]. The use of DL-MCTS allows the 
agent to simulate possible future states, considering both short-term and long-term consequences, and to 
make decisions based on the most advantageous outcomes [8]. 

As part of the analysis, we pitted different strategies against each other to observe which resulted in the 
best average outcomes. These strategies included a mix of aggressive and defensive tactics, where the 
agent decided when to build troops, when to attack, and when to fortify its position. However, we found 
that the deviations in results were statistically insignificant, most likely due to near-perfect play, where the 
AI’s decision-making approached the optimal strategies given the constraints of the game. The statistical 
insignificance of the deviations suggests that the model, through the use of DL-MCTS, consistently made 
near-optimal decisions, leaving little room for variation in outcomes when strategies were tested against 
each other. 
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Creating the Game Environment 

The game space was represented by a hash table, with keys as the territory names and values representing 
the agent who owned the territory, as well as the number of troops stationed there (stored as an ordered 
pair). Graphically, the user was presented with a game map, where icons for each agent and indicators for 
troop counts were displayed and updated dynamically as the game state hash table changed. 

Additionally, troop bonuses were tracked in a separate hash table and applied during the main game loop. 
These bonuses were added after each turn, in accordance with the rules of the game. Battles were 
simulated using random number generation to mimic dice rolls, with the standard attack-defense rules of 
RISK applied. 

 
Running the DL-MCTS Algorithm 

The implementation of the DL-MCTS algorithm in our system allows us to model and simulate various 
strategic decisions within the RISK game by traversing the search tree and evaluating different potential 
game states. The core idea behind DL-MCTS is to efficiently balance exploration (trying new moves) and 
exploitation (capitalizing on the most successful strategies discovered so far). The UCT (Upper 
Confidence Bound for Trees) plays a crucial role in this, helping us determine which branches of the 
search tree to explore based on the trade-off between exploration and exploitation. 

For DL-MCTS, we used a search depth of 12 to balance performance with accuracy. Going deeper could 
potentially improve the quality of the decisions made, but was impractical due to computational time 
constraints. To optimize memory usage and make the representation more efficient, we encoded the game 
board as binary values, akin to the bitboards used in Chess, allowing fast access to the state of the game 
and efficient calculations. 

In this context, the DL-MCTS algorithm allows each strategy to be encapsulated as a distinct function, 
which modifies the game state during an attack scenario, troop reinforcement, or fortification. Here's a 
breakdown of the specific strategies implemented in our system, integrated into the DL-MCTS 
framework: 

Table 3. Implemented RISK strategies 

Category Strategy Description 

Reinforcement Strategies 
Reinforce Weak 
Territories 

Focuses on defending territories 
with low troop counts by optimal 
troop distribution. 
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Reinforcement Strategies 
Reinforce Owned Key 
Territories 

Prioritizes reinforcing key 
territories essential for 
controlling large areas. 

Reinforcement Strategies 
Reinforce Attacked 
Territories 

Reinforces territories under 
attack to make them harder to 
conquer. 

Attack Strategies Aggressive Attack 

Prioritizes attacks with a high 
probability of success using 
heavily fortified territories. 

Attack Strategies Guerilla Style Attack 

Targets weaker enemy territories 
to weaken the opponent's 
position strategically. 

Attack Strategies Blitz Attack 

Attacks key but weakly defended 
enemy territories to gain strategic 
advantage. 

Troop Transfer and Fortification 
Strategies Troop Transfer 

Reallocates troops to newly 
conquered territories to secure 
them against counterattacks. 

Troop Transfer and Fortification 
Strategies 

Fortify Weakest 
Territories 

Strengthens the weakest 
player-owned territories to 
prevent vulnerabilities. 

 

A specific example of optimality in RISK using DL-MCTS occurs when an AI agent decides whether to 
attack a fortified territory or strengthen its position. The agent, with a balanced number of troops, faces an 
opponent with a heavily fortified region. Without DL-MCTS, the agent might rush into an attack, 
potentially losing troops. However, with DL-MCTS, the agent simulates multiple future outcomes, 
considering the effects of both attacking immediately or waiting to reinforce its troops. The UCT strategy 
helps the agent explore these paths, and it identifies that waiting for reinforcements before attacking 
increases the chances of success. This strategy maximizes the agent’s long-term control by avoiding 
unnecessary losses and ensuring a stronger offensive. 

In contrast, a suboptimal decision arises when the agent, overly focused on short-term gains, decides to 
attack immediately. Despite the risk, it may believe the attack will catch the opponent off guard. However, 
this premature assault could fail due to insufficient troop strength, resulting in significant losses and 
leaving the agent vulnerable to counterattacks. This example shows that while DL-MCTS generally aids 
in making optimal decisions, an overemphasis on short-term rewards can sometimes lead to suboptimal 
outcomes by neglecting long-term consequences. 
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Case Study 2: LTSM for NBA Player Statistic Prediction 

Predicting NBA player statistics is a challenging task due to the complexity of basketball as a dynamic 
and team-oriented sport. Long Short-Term Memory (LSTM) networks, a type of recurrent neural network 
(RNN), are well-suited for this problem as they can model temporal dependencies and capture patterns in 
sequential data [8]. These models excel at handling sequences where the order of events is important, such 
as predicting player performance over time based on previous games. This case study explores the 
application of LSTM models for predicting individual player statistics in NBA games, leveraging their 
ability to analyze trends and temporal relationships between game events [9]. 

Problem Definition 

The predicted player statistics can greatly enhance fantasy basketball strategy by enabling managers to 
make data-driven decisions when selecting and benching players. For instance, if the model forecasts a 
strong performance for a player like Nikola Jokić against a weaker defensive team, fantasy managers can 
prioritize starting him, optimizing their team’s potential for points, rebounds, and assists. Additionally, the 
model can help identify players in a slump or on the verge of a breakout, allowing managers to make 
timely roster adjustments. Overall, the solution helps fantasy managers maximize their team’s 
performance by aligning player selections with expected game outcomes. 

Data Collection and Preprocessing 

A custom dataset was created using the NBA Stats API, encompassing historical game data for NBA 
players. This dataset includes the following key categories: 

● Player-specific data 
○ This includes statistics from previous games such as points, rebounds, assists, playing 

time, player position, and injury information. 
● Team data 

○ Information on the team's performance, including win/loss record, pace, and both offensive 
and defensive ratings. 

● Opponent data 
○ Data related to the opponent’s performance, including defensive metrics, matchup 

statistics, and specific player matchups. 
● Temporal data 

○ Sequence of games, details about back-to-back games, and rest days, helping to account for 
game fatigue and recovery periods. 

This custom dataset, built specifically for the predictive modeling of NBA player statistics, integrates a 
variety of factors that could influence player performance on any given game day. 
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Handling Missing Values (e.g., Injury-Related Absences) 

Challenges: 

● Players may miss games due to injuries, rest, or other factors, leading to gaps in their 
statistical records. 

● Missing data could hinder sequential modeling, especially for LSTMs, which rely on 
complete time-series inputs. 

Approach: 

● Imputation Techniques: 
○ Forward Filling: Missing values were replaced with the player's most recent 

available game statistics. This assumes consistency in performance trends. 
○ Backward Filling: Used in rare cases when data was unavailable for the last 

recorded games but available earlier in the season. 
○ Season Average Imputation: When no prior data was available (e.g., a rookie's first 

game after an absence), the player's season average statistics were used. 
● Injury Indicator Feature: 

○ A binary feature Injury Flag was added to mark whether a player was injured or 
unavailable for a given game. 

○ This feature helped the model account for context, such as a player's return from an 
absence or reduced performance after injury. 

● Complete Sequence Imputation: 
○ If an entire sequence (e.g., the last 5 games) had missing values for a player, the 

sequence was excluded unless interpolated based on team or position-specific 
averages. 

 

Normalizing Numerical Features for Consistent Scaling 

Challenges: 

● Player statistics (e.g., points, assists) vary widely in scale, potentially leading to biased 
model predictions. 

Approach: 

● Min-Max Scaling: 
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○ All numerical features were scaled to a range of [0,1] using: 

 
○ This preserved the relative differences between features and ensured compatibility 

with LSTM requirements. 
● Z-Score Normalization: 

○ For features with outliers (e.g., anomalously high-scoring games), Z-score 
normalization was applied: 

○  where μ is the mean, and σ is the standard deviation of the feature. 
● Feature-Specific Scaling: 

○ Separate normalization was applied to season-long averages, short-term trends 
(e.g., P5 stats), and opponent-specific data to maintain interpretability. 

 

Accounting for Temporality in Sequential Data 

Challenges: 

● LSTMs require sequences that reflect temporal relationships (e.g., recent games should 
weigh more than older games). 

● Temporal trends like hot streaks or slumps must be captured accurately. 

Approach: 

● Sequence Creation: 
○ Overlapping input sequences of length TT (e.g., 5 games) were generated for each 

player. Each sequence included: 
■ Game-by-game statistics for the last TT games. 
■ Contextual features like opponent data, team performance, and game date. 

○ For example, for a sequence length of 5 games: 
■  

● Weighted Emphasis on Recent Games: 
○ Recent games were assigned higher weights using exponential decay or similar 

methods during feature aggregation: 

 
● Opponent-Specific Trends: 

○ Features like P5 Season PPG vs OPP were calculated dynamically by aggregating 
statistics from recent games against the current opponent. 
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● Sliding Window Technique: 
○ A sliding window approach ensured that every game contributed to multiple 

sequences, maintaining data richness. 
● Game Context: 

○ Additional features such as rest days, back-to-back games, and travel distance were 
incorporated to provide a richer temporal context. 

Model Architecture 
 

 
Figure 2: Diagram of the proposed neural network 

Input Layer 

The input layer accepts a sequence of player statistics and contextual game data, which are used to predict 
the game outcomes. The inputs are represented as a 2D or 3D tensor depending on how the data is 
structured (e.g., for a sequence of games). These inputs include: 

Table 4. Input layer for the described Neural Network 

Feature Name Description Relevance 

Opponent Def. 
Ranking 

The opponent's defensive 
ranking for the season. 

Indicates the difficulty of the opponent's defense, 
impacting expected player performance. 
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Season PPG 

The player's average 
points per game (PPG) 
for the season. 

Reflects the player's overall scoring consistency 
throughout the season. 

Season APG 

The player's average 
assists per game (APG) 
for the season. 

Represents the player's playmaking ability and 
contribution to team offense. 

Season RPG 

The player's average 
rebounds per game 
(RPG) for the season. 

Indicates the player's rebounding effectiveness, 
both offensive and defensive. 

P5 Season PPG 

The player's average 
points per game (PPG) 
over the past 5 games. 

Captures short-term trends in scoring, useful for 
identifying momentum or slumps. 

P5 Season APG 

The player's average 
assists per game (APG) 
over the past 5 games. 

Highlights recent playmaking trends, indicating 
hot streaks or reduced effectiveness. 

P5 Season RPG 

The player's average 
rebounds per game 
(RPG) over the past 5 
games. 

Tracks recent rebounding activity, accounting for 
short-term performance fluctuations. 

P5 Season PPG 
vs OPP 

The player's average 
points per game (PPG) 
over the past 5 games 
specifically against the 
current opponent. 

Focuses on matchup-specific scoring trends, 
highlighting performance against similar defenses 
or players. 

P5 Season APG 
vs OPP 

The player's average 
assists per game (APG) 
over the past 5 games 
specifically against the 
current opponent. 

Identifies the player's recent playmaking ability in 
comparable matchups. 

P5 Season RPG 
vs OPP 

The player's average 
rebounds per game 
(RPG) over the past 5 
games specifically 
against the current 
opponent. 

Emphasizes rebounding effectiveness in similar 
matchups, useful for defensive or offensive 
rebounding analysis. 
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Season PPG vs 
OPP 

The player's average 
points per game (PPG) 
against the current 
opponent for the entire 
season. 

Tracks season-long scoring trends against the 
specific opponent. 

Season APG vs 
OPP 

The player's average 
assists per game (APG) 
against the current 
opponent for the entire 
season. 

Indicates playmaking consistency in past 
encounters with the specific opponent. 

Season RPG vs 
OPP 

The player's average 
rebounds per game 
(RPG) against the current 
opponent for the entire 
season. 

Provides insights into rebounding trends against a 
recurring opponent. 

 

These features represent both the player's season performance and recent trends against specific 
opponents. 

LSTM Layers 

The LSTM layers learn temporal dependencies by processing sequences of the input data, such as how 
performance in past games impacts future game statistics. LSTM neurons include memory cells, each 
with input, forget, and output gates: 

● Input Gate 
○ Controls how new information is added to the memory. 

● Forget Gate 
○ Decides which information to discard. 

● Output Gate 
○ Determines what information is passed forward. 

These memory cells enable the LSTM to retain relevant statistical trends over time, such as whether a 
player’s performance improves or declines against certain opponents or in recent games. This is crucial 
for capturing time-based patterns, such as fluctuations in performance due to fatigue or improved form 
[10]. By remembering these long-term dependencies, LSTM models can make more accurate predictions 
based on the historical context of a player’s performance [11]. Moreover, LSTMs are particularly effective 
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in handling the complex interactions between game events, enabling them to capture nuances such as the 
impact of previous games on future performance, which traditional models might miss [12]. 

Dense Intermediate Layer 

The Dense intermediate layer enables the model to learn complex patterns by establishing connections 
between all neurons in the previous layer. This fully connected structure allows the model to extract 
meaningful features, transforming the input data through a weighted sum followed by an activation 
function. For example, a Dense layer with 128 neurons can capture intricate relationships in the data, 
contributing to the model’s ability to learn and generalize better across different tasks. 

Dense Output Layer 

The Dense output layer predicts the three statistics for the game: 

● Points (pts) 
● Rebounds (reb) 
● Assists (ast) 

Each neuron corresponds to one of these output statistics. The Dense layer uses a fully connected network 
to combine the features learned by the LSTM and Dropout layers, producing predictions for each statistic. 
The activation function is typically linear for regression tasks, allowing the model to output continuous 
values for each predicted statistic (e.g., predicted points, rebounds, and assists). 

Training and Evaluation 

● Dataset Split: 
○ The historical game data was divided into three sets: training, validation, and testing. 
○ Training Set: 70% of the data 

■ This set was used to train the model and update its weights. It contained the 
majority of the historical game data. 

○ Validation Set: 15% of the data 
■ This set was used to validate the model during training, helping to tune 

hyperparameters and prevent overfitting. 
○ Testing Set: 15% of the data 

■ After the model was trained, it was evaluated on this set to assess its performance 
and generalization to unseen data. 

● Temporal Split: 
○ Given the sequential nature of the data (time-series), the split was performed 

chronologically. For instance: 
■ The first 70% of the games in the dataset (based on the date) were used for training. 
■ The next 15% of games (chronologically) were used for validation. 
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■ The final 15% of the games were used for testing. 

 

Evaluation Metrics Computation 

● Root Mean Squared Error (RMSE): 
○ RMSE was used to measure the average magnitude of the prediction error. A lower RMSE 

value indicates better prediction accuracy. 
● R-squared (R²): 

○ R² was used to assess how well the model explained the variance in the data. It ranges from 
0 to 1, with a higher value indicating better model performance. 

● Mean Absolute Error (MAE): 
○ MAE was used to quantify the average absolute error between the predicted and actual 

values. Smaller MAE values indicate better accuracy. 

 

Training Process 

● Optimizer 
○ Adam optimizer was used for training, combining the benefits of both RMSProp and SGD 

with momentum. 
● Batch Size 

○ A batch size of 64 was chosen for efficiency and model convergence. 
● Epochs 

○ The model was trained for 50 epochs, with early stopping based on validation loss to 
prevent overfitting. 

 

Error Metric Calculation with TensorFlow 

● TensorFlow Handling 
○ TensorFlow's built-in functions were used to calculate the error metrics during both 

training and evaluation. The framework automatically computes RMSE, MAE, and R² as 
part of its model evaluation process. 

○ For example, the tf.keras.metrics.MeanSquaredError and 
tf.keras.metrics.MeanAbsoluteError were used to calculate RMSE and MAE. The R² 
metric could be computed using a custom function or adapted from available TensorFlow 
utilities. 
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○ This automated handling allows for real-time performance monitoring as the model trains 
and validates, providing efficient feedback and ensuring consistency across the evaluation 
process. 

Results and Analysis 

 

Figure 3: Model results across multiple NBA players of decreasing minutes (left to right) 

 

The LSTM model demonstrated strong performance in predicting player statistics, achieving an overall 
accuracy of up to 75%. Accuracy was calculated using the following formula: 

 

Overall Accuracy 
 

While the maximum accuracy observed was 75%, there were streaks where the model achieved accuracy 
levels exceeding 90%. These high-accuracy periods typically occurred when predicting the statistics of 
star players with consistent performance and playing time. 
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Trends Observed 

● Consistency of Star Players 
○ The LSTM model consistently demonstrated higher accuracy when predicting statistics for 

star players with stable roles and performance patterns, such as Nikola Jokić and Stephen 
Curry. These players tend to have well-established performance metrics, including points, 
rebounds, and assists, which are less prone to fluctuations. 

○ For these players, the model’s accuracy was particularly strong in predicting points and 
assists, given their consistent offensive roles. The accuracy for these players sometimes 
exceeded 90%, especially in games where their performance was not significantly 
impacted by external factors such as injuries or major changes in their role (e.g., due to 
opponent-specific strategies). The model's predictions were less influenced by noise and 
more aligned with their typical output, which is reflected in the high accuracy rates during 
these periods. 

○ Moreover, these players' historical data provided a reliable training foundation for the 
model, allowing it to capture recurring patterns in their performance. This high accuracy is 
indicative of the LSTM model’s capacity to leverage consistent, historical performance to 
generate robust predictions. 

● Impact of Team and Opponent Data 
○ Incorporating contextual data such as team statistics and opponent defense metrics 

significantly enhanced the prediction accuracy, particularly for points and assists. When 
external factors like the opponent's defensive strength or the team's offensive performance 
were integrated into the model, the accuracy of predictions improved notably. This 
highlights how the model can adjust for contextual influences that affect player output. 

○ For example, when predicting points, the model was able to account for situations where 
players faced stronger or weaker defenses. It showed heightened accuracy when predicting 
performance against weaker defensive teams, where players like Jokić or Curry could be 
expected to perform at their peak. Conversely, the model performed slightly less accurately 
when these players were up against top-tier defenses, yet it still showed improved results 
compared to scenarios where such contextual data was not used. 

○ The inclusion of opponent-specific data—such as defensive rankings, opposing team 
performance, and even recent trends—allowed the model to better align player 
performance with the broader game dynamics, pushing prediction accuracy closer to or 
above the 90% mark in certain matchups. 

● Challenges with Inconsistent Players 
○ One of the key challenges for the LSTM model arose with predicting statistics for players 

who exhibited inconsistent playing time or fluctuating performance, such as bench players 
or those returning from injury. These players often experience significant variability in 
their roles from game to game, making it more difficult for the model to predict their 
statistics with high accuracy. 
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○ For example, bench players who received fewer minutes or had sporadic involvement in 
the offense were harder to predict. The model's predictions tended to deviate more from 
actual performance, leading to lower overall accuracy for these players. This issue was 
particularly pronounced when predicting statistics for players returning from injuries, as 
their performance could be impacted by factors like reduced minutes or a gradual return to 
form. These players often do not exhibit the stable trends that star players do, and their 
unpredictable roles added noise to the model’s predictions. 

○ Despite these challenges, there were instances where the model achieved higher accuracy 
with these inconsistent players, particularly when their role in the game was clear or when 
they had a consistent number of minutes in recent games. For example, if a player had been 
consistently performing at a certain level in the past few games, the model was able to 
make more accurate predictions for their performance in subsequent games, and accuracy 
for such players sometimes approached 90%. However, overall, these inconsistencies 
contributed to the model’s overall accuracy of 75%. 

 

Conclusion 

In conclusion, the best AI approach for solving a particular problem depends largely on the nature of that 
problem. For games like RISK, where the environment is relatively structured and deterministic, classical 
AI techniques such as Minimax and Monte Carlo Tree Search (MCTS) are effective. However, for 
dynamic and complex problems like sports analytics, where the data is large, unstructured, and temporal, 
deep learning models like LSTM networks provide significant advantages. 

Moreover, hybrid models that combine the strengths of traditional algorithms and machine learning 
techniques can offer a more comprehensive solution to real-world problems. Understanding how and 
when to use these different AI methods is essential for developing systems that can solve a broad range of 
problems efficiently and accurately. 
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