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Abstract 
In today’s day and age, strokes are officially regarded as the leading cause of death and 
disability globally, per the World Health Organization (WHO). A stroke, also known as a 
cerebrovascular accident, is a medical emergency that occurs when blood flow to a part of the 
brain is interrupted or reduced, leading to damage or death of brain cells [1]. In many cases, the 
medical diagnosis of a stroke isn’t attained until after its onset, which, more often than not, leads 
to fatal consequences. Prompt medical attention is critical when treating a stroke to minimize 
brain damage and prevent long-term disability or death. Lately, machine learning has been 
viewed as a significant advancement towards preemptive stroke diagnosis [2]. Machine learning 
(ML) algorithms analyze vast amounts of medical data, including electronic health records, 
medical imaging, genetic information, and real-time patient monitoring data, to uncover patterns 
and insights that were previously unattainable [3]. This research paper investigates the 
application of machine learning models at their fundamental level for stroke prediction. The 
paper employs a supervised machine learning model, applying regression algorithms to a 
collected patient dataset comprising demographic, clinical, and lifestyle factors of patients. 
Various classifiers, including logistic regression, decision trees, support vector machines (SVM), 
k-nearest neighbors (KNN), and random forest, were employed to develop predictive models. 
The study aimed to assess the performance of these classifiers and identify the most accurate 
model for stroke prediction. Results indicated that the random forest classifier achieved the 
highest accuracy among all models evaluated, with 99.81% accuracy. This finding underscores 
the efficacy of ensemble learning techniques in capturing complex interactions and non-linear 
relationships within the data. The research highlights the potential of ML-based approaches for 
identifying high-risk individuals for stroke and guiding targeted preventive interventions in clinical 
practice. 
 
 
Introduction 
Stroke, a cerebrovascular accident, is the leading cause of death and disability. A stroke occurs 
when the blood supply to part of the brain is interrupted or reduced, preventing brain tissue from 
receiving oxygen and nutrients, which can lead to the death of brain cells within minutes. 
Strokes can be classified as either ischemic, caused by blockages or narrowing of the arteries 
supplying blood to the brain, or hemorrhagic, resulting from blood vessels in the brain bursting 
and causing bleeding [4]. The severity and outcomes of a stroke can vary widely, ranging from 
complete recovery to long-term disability or death, depending on the location and extent of brain 
tissue affected. 
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The World Health Organization states, “15 million people worldwide suffer a stroke. Of these, 5 
million die and another 5 million are left permanently disabled, placing a burden on family and 
community.” [5] Strokes may affect people of all ages, although the likelihood of stroke onset 
skyrockets for people aged 55 and above ("Stroke Facts & Statistics"). Furthermore, the WHO 
states that from 1990 to 2019, there has been a 70% increase in stroke incidence, of which a 
43% increase in fatality rate has transpired. In the United States itself, it is estimated that close 
to 800,000 people are affected by a stroke annually as of 2024. 
 
The onset of this disease is influenced by a myriad of lifestyle factors and pre-existing 
conditions. Among the most critical risk factors are high blood pressure, diabetes, and heart 
diseases such as atrial fibrillation. Cigarette smoking is also a major contributor. Additional risk 
factors encompass physical inactivity, being overweight or obese, and having high cholesterol 
levels. Conditions like sickle cell disease and excessive alcohol consumption further elevate 
stroke risk. A family history of stroke, drug abuse, and genetic conditions such as blood-clotting 
disorders or vascular disorders are also notable contributors [6]. Understanding these diverse 
risk factors is crucial for developing comprehensive predictive models and effective preventive 
strategies.  
 
To combat the repercussions of stroke onsets, the ability to accurately predict stroke diagnosis 
plays a crucial role in preventive medicine, thus enabling early intervention strategies to mitigate 
its devastating consequences.  
 
Unfortunately, existing methods for stroke prediction often face challenges in achieving high 
accuracy and reliability, leading to missed opportunities for timely intervention. Recently, 
however, machine learning has been widely implemented in the medical field. By accumulating 
patient data, ML algorithms can discover patterns in datasets that allow medical professionals to 
predict treatment outcomes. Multiple studies have already been conducted regarding the 
potential of utilizing machine learning to forecast stroke; yet, it has not been widely established 
as a medical measure as of yet. The potential of ML within healthcare nonetheless continues to 
intrigue, and this paper seeks to reinforce this idea.  
 
As a lot of research and investment has already been dedicated to heart stroke predictions, this 
paper aims to diverge and address machine learning techniques for predicting the onset of brain 
stroke. The underlying problem in the domain of stroke prediction lies in the limitations of 
traditional risk assessment methods, which rely on manual scoring systems or simplistic 
statistical approaches. These methods often fail to capture the complex interplay of risk factors 
and may overlook subtle patterns indicative of impending stroke events. As a result, there is a 
pressing need for more sophisticated and accurate predictive models that can identify 
individuals at heightened risk of stroke with greater precision and reliability. However, for this 
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exploration, the data utilized is very limited in that it does not factor in images for classifying 
whether a patient has the chance for the onset of a stroke or not, but rather depends on 
demographic, lifestyle, and biological data.  
 
The significance of this research lies in its potential to revolutionize stroke risk assessment and 
preventive healthcare practices. By harnessing the power of ML algorithms, software engineers 
may aim to develop predictive models capable of analyzing vast datasets of patient information 
to identify subtle indicators of stroke risk [7], [8], [9]. This research has profound implications for 
clinical practice, as accurate stroke prediction can enable healthcare providers to implement 
timely interventions, such as lifestyle modifications, medication management, and targeted 
medical interventions, to prevent or minimize the occurrence of strokes and associated 
disabilities.  
 
 
Methodology 
Proposed Process of Exploration 
To conduct this investigation, the dataset must first be processed. The dataset is available for 
model construction following its processing, through which a variety of prominent ML models will 
be trained to “learn” the data. After creating and training the models, several accuracy measures 
will be utilized to compare the success of the trained models. Below, a general overview of the 
Machine Learning workflow is documented and will be followed in this exploration.  
 

 
Figure 1: Machine Learning Workflow 
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Data Set  
The data set is a .csv file, containing clinical features from 40910 observations with 11 different 
attributes. It has been collected from a Kaggle dataset, with both numerical and categorical 
values. The 11 attributes of the data can be seen in Table 1 below: 
 

No. Name of 
Attribute 

Description of Attribute Type of Data 
(Numerical/Categorica

l) 

1 sex patient's gender (1: male; 0: female) Categorical 

2 age patient's age (in years) Numerical 

3 hypertension patient has ever had hypertension (1) or 
not (0) 

Categorical 

4 heart_disease patient has ever had heart_disease(1) or 
not (0) 

Categorical 

5 ever_married patient married (1) or not (0) Categorical 

6 work_type patient job type: 0 - Never_worked, 1 - 
children, 2 - Govt_job, 3 - Self-employed, 4 

- Private 

Categorical 

7 Residence_type patient area: 1 - Urban, 0 - Rural Categorical 

8 avg_glucose_le
vel 

patient average blood sugar level Numerical 

9 bmi Body Mass Index Numerical 

10 smoking_status 1 - smokes, 0 - never smoked Categorical 

11 stroke Whether the patient has stroke (1) or not 
(0) 

Categorical 

 
Table 1: Dataset + Descriptions 

   
The first 10 rows constitute the input hypermaters that will be inputted into various machine 
learning models, namely the patient’s: sex (categorical), age (numberical), hypertension history 
(categorical), heart disease history (categorical), marriage history (categorical), work status 
(categorical), residence type (categorical), average blood glucose levels (numerical), current 
body-mass-index (numerical), and smoking status (categorical). 
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The 11th row above signifies the response variable, which the developed machine learning 
models aim to predict, whereas the remaining rows indicate the exploratory variables for this 
investigation. 
 
Data Pre-processing 
Data pre-processing is a necessary component of the machine learning workflow, utilized to 
convert raw data into a more useful and filtered format to improve data quality by removing any 
unwanted noise and outliers that could deviate the model from its intended training.  
 
The primary step taken is to determine whether any of the parameters may be deemed to be 
irrelevant for stroke prediction. As ML models are best trained when they are tuned with the 
necessary parameters, it is essential to remove unimportant features. Additionally, any null 
response variable data points (stroke or no stroke) must be accordingly removed. Patient data 
containing null parameter values should be filled up by mean values as an estimate.  
 
Thereafter, the minority class of the response variable (if a minority exists) must be oversampled 
using the Synthetic Minority Over-sampling Technique (SMOTE) if there exists a drastic 
imbalance in the occurrence of the target variable (number of patients diagnosed with stroke) as 
opposed to the absence of the target variable or vice-versa. Having a balanced data set is 
indispensable to preventing bias in the model. 
 

 
Figure 1: Stroke Patient Count 
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Based on Figure 1:  

# of Patients WITH Stroke Number of Patients WITHOUT Stroke 

20128 19857 
 
The data set for the target variable (stroke) is quite balanced: 50.34% of the patients from the 
data set have had the onset of stroke, whereas the remaining 49.66% have not been diagnosed 
with stroke. As a result, SMOTE is not required to address any class imbalance problems.  
 
Typically, label encoding must first be performed to ensure that any string-literal categorical 
values are converted into a numerical format; however, this data set has been published in a 
feature-encoded format by default, namely having been converted into a numerical format 
through the One Hot Encoding technique. 
 
Additionally, the data must be modified such that the parameters are standardized through 
appropriate scaling, allowing all numerical values to be comparable on a similar axis. 
Standardization occurs by transforming the features to have a mean close to 0 and a standard 
deviation close to 1. This technique transforms the values of features to a similar scale, ensuring 
that feature contributions to model predictions are equally significant. 
 
The data is then run through a Z-score test to identify if any outliers exist. A Z-score indicates 
the number of standard deviations a value is from the mean of a data set’s distribution; any point 
with a z-score having a magnitude greater than or equal to 3 indicates an outlier point. These 
outliers are then removed. 
 
The final key measure taken for data pre-processing is to ensure that the data are not too 
correlated, as multicollinearity can lead to unstable and unreliable coefficient estimates in 
regression models and perhaps model overfitting to a more extreme extent, reducing the 
model’s interoperability. 
 
 
Machine Learning Classifiers 
In this paper, 6 different machine classifiers were used: Logistic Regression, Decision Tree, 
Random Forest Classifier, SVM, KNN, and XGBoost. The data has to be broken up into 
predominantly a training set and the rest into a testing set. Validating the ML models is done 
using the k-fold cross-validation technique. This evaluates the performance of an ML model and 
ensures its ability to generalize to new, unseen data. The dataset is partitioned into k subsets, or 
“folds”. The models are trained k times, where a different fold is used as the validation set each 
time, and the remaining k-1 folds are used as the training set. This process helps mitigate 
issues related to overfitting. The performance metrics, namely the accuracy, AUC, and 
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F1-scores, are calculated for each iteration, and the results are averaged to provide a more 
reliable estimate of the model's true performance. K-fold cross-validation ensures that every 
data point is used for both training and validation, making it a robust method for performance 
evaluation and hyperparameter tuning in machine learning models. 
 
 
Exploratory Data Analysis  
 
Data Visualization 

 
Figure 2: Initial Summary Statistics of the Data Set Features 

 
Figure 2 presents the summary statistics of the different features of the data set, indicating data 
such as the mean value, the standard deviation, the minimum and maximum values, as well as 
the quartile values of the feature.  
 
Histograms are an effective way to depict the frequency of the different features of the data set. 
Figure 3 illustrates the dataset’s proportions.  
 

 
Figure 3: Box-and-Whisker Plots for BMI, Average Glucose Level, and Age 

 
Box-and-whisker plots effectively convey key information about the data set, identifying the point 
of central tendency, as well as the distribution of data. As can be seen from the box-and-whisker 
plots in Figure 3, only the BMI values contain some significant outliers. Removing these outliers 
using the aforementioned z-score technique will be performed in the Data Pre-processing stage. 

7 



 
 
 

             

          

                      

sss    
Figure 4: Histogram of Features in the Data Set 

 
It is crucial to note from Figure 4 that the categories of hypertension, heart_disease, 
ever_married are all instances of imbalanced data, which may affect feature selection and 
cause biases in the trained models.  
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Figure 5: Correlation Heatmap between Different Parameters 

 
The correlation between pairs of features depicted in Figure 5 indicates the strength and 
direction of the linear relationship between them. A correlation coefficient provides a statistical 
measure of how changes in one of the variables result in changes in the other. A highly 
correlated pair refers to two features or variables in a dataset that exhibit a strong linear 
relationship with each other, indicating a close connection and implying that as one variable 
changes, the other tends to change in a consistent and predictable manner. 
 
A correlation coefficient typically ranges from -1 to 1: 

- 1 indicates a perfect positive correlation (both variables increase or decrease together)  
- -1 represents a perfect negative correlation (one variable increases as the other 

decreases) 
- 0 implies no linear correlation.  

 
Any pair with a correlation value past the threshold of ± 0.8 is conventionally accepted to be a 
highly correlated pair and should be removed from the dataset so as to minimize the effects of 
multicollinearity, as it may lead to skewed or misleading results. If two features are nearly 
identical or strongly correlated, they might carry redundant information, potentially leading to 
issues like multicollinearity. Multicollinearity can impact the stability of regression coefficients 
and make it challenging for the model to discern the individual contribution of each feature.  
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Figure 5 shows that there are no two parameters that are highly correlated to one another; thus, 
multicollinearity should not affect the results produced in this investigation. 
 
Data Pre-processing  
By first removing any rows containing NULL values for any of the input parameters or for the 
target variable, there was some information loss, albeit minimal in the context of the sample 
data size. The initial data set contained 40910 rows or patient details; however, upon removing 
missing data records, there remained 40907 records, a mere 3 patient details being excluded, or 
0.007% of the total data set. The data set was then standardized, with an average value of 0 
and a standard deviation of 1.  
 
Removing Outliers 
As mentioned prior, through an investigation of the 3 primary numerical features, BMI is the only 
one that contains significant outliers to the data set. Figure 6 depicts the result of removing any 
such outliers.  

 
Figure 6: Modified Box-and-Whisker Plots for BMI, Average Glucose Level, and Age (without outliers) 

 
Visualization of Feature Selection 

 
Figure 7: Feature Importance Score of the Parameters on Stroke 
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Figure 7 shows that all the parameters have a positive feature importance score. Feature 
importance is a technique whereby a “score” is calculated for each input feature of a model. The 
above image depicts the relationship between the input parameters and the testing variable 
based on the data set, with avg_glucose_level and bmi having the most profound influence on 
the onset of stroke. This score signifies the importance or weighting that is carried by that input 
parameter as the model returns predicted data based on the training data set input. A higher 
score indicates the input feature has a more profound effect on the model that is being used to 
predict a certain variable. It is crucial to note that feature importance calculates the significance 
of the features relative to one another as opposed to the importance of a single feature 
independently relative to the target variable. This step is crucial, as the ultimate goal is to 
identify and retain the most important features and discard the less important and redundant 
ones.  
 
Data Splits 
The next step is to divide the data set randomly into training and testing data. Multiple variations 
of the training testing split proportions were considered, such as 80-20% and 60-40% splits; 
however, for this investigation, the performance was optimized at a 70-30% case.  
 
Evaluation/Confusion Matrix 
A confusion matrix will be used to evaluate the performance of different machine learning 
classification algorithms. It illustrates the frequency with which the different models can 
accurately predict the outcome of the target variable [10]. True positive and true negative values 
are intended results, as they demonstrate accuracy in the models; however, false positive and 
false negative values, on the contrary, are indicative of inaccuracies in the prediction models. In 
this investigation, false positives may be more accepted than false negatives solely due to 
additional precautionary measures being taken regardless of a stroke diagnosis.  
 
Through the use of the confusion matrices, the different models’ accuracy, precision-recall 
trade-off, F1 score, and AUC can be utilized to assess their testing performance. Formulas for 
calculation can be found in the appendices (A.1 through A.7). 
 
 
Machine Learning Models  
For this investigation, some of the most prominent algorithmic models, namely Decision Trees, 
Random Forest Classifier, XGBoost, Logistic Regression, KNN, and SVM were utilized to 
predict the diagnosis of stroke utilizing the aforesaid dataset.   
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Logistic Regression 
A logistic regression model starts with a linear equation of the form: 

 𝑧 =  𝑏
𝑛
𝑥𝑛 +  𝑏

𝑛−1
𝑥𝑛−1 +... +  𝑏

2
𝑥2 +  𝑏

1
𝑥1 +  𝑏

0

Here,  is the linear combination of features (indicated by ,  and is weighted by 𝑧 𝑥𝑛 𝑥𝑛−1, ..., 𝑥2, 𝑥1)
coefficients ( ,  …, ). [11] 𝑏

𝑛
𝑏

𝑛−1
, 𝑏

2
,  𝑏

1
,  𝑏

0

 
The above linear function is converted into a probability using a sigmoid function, which is 
applied on . This sigmoid function can be modelled by:  𝑧

 𝑃(𝑌 = 1) =  1

1+𝑒−𝑧

 
 is the probability of the positive class (patient being diagnosed with stroke). This 𝑃(𝑌 = 1)

logistic regression function serves to convert a linear model into a probability whereby a higher 
value (past the threshold value of 0.5) inclines the model towards predicting 1 (positive class), 
whereas a lower probability inclines the model’s prediction towards 0 (negative class). 
 

 
Figure 8: Logistic Regression Sigmoid Function (Song) 

 
The logistic regression model learns the weights associated with each feature during training, 
adjusting them to maximize the likelihood of the observed outcomes. These learned weights, 
along with an intercept term, define the decision boundary, which typically tends to be 0.5. 
 
Logistic regression is a simple, interpretable, and computationally efficient model. It performs 
well in binary classification tasks, providing probabilistic predictions that can be easily 
understood [12]. Logistic regression is particularly effective when the relationship between 
predictors and the target variable is roughly linear. 
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However, logistic regression may struggle when faced with non-linear patterns or complex 
interactions between features. Its simplicity can be a limitation in capturing intricate relationships 
present in the data. 
 
Decision Trees 
Decision Tree is an ML model that can be utilized for both regression and classification 
purposes. This model resembles a tree, operating by recursively partitioning the dataset into 
subsets based on the values of input features, ultimately making decisions or predictions based 
on the data's characteristics [13], [14]. 
 

 
Figure 9: Decision Tree Workflow (Nicholson) 

 
The process begins with the selection of a root node, representing the entire training dataset. 
Subsequent nodes in the tree correspond to feature splits, where the dataset is divided based 
on a chosen feature's values. The decision tree algorithm employs a top-down approach, 
selecting the feature that optimally splits the data at each node. This optimization is typically 
based on criteria like Gini impurity or information gain for classification tasks and mean squared 
error for regression tasks.  
 
The tree continues to grow until a predefined stopping criterion is met, such as a specific depth 
or purity threshold. The resulting structure, with its branching decisions, forms a hierarchical 
tree. During prediction, new data traverses the tree, and the path followed determines the final 
outcome. Selecting the optimal depth of the decision tree involves tuning the hyperparameters 
using cross-validation and grid search in Python with the sci-kit learn library.  
 
Decision trees offer transparency and ease of interpretation, making them valuable for 
extracting actionable insights. They handle both numerical and categorical data, and their 
resistance to outliers enhances robustness. The hierarchical structure of decision trees allows 
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for a step-by-step representation of decision-making processes, aiding in understanding 
complex relationships within the data. 
 
However, these may be susceptible to overfitting, especially with deep trees, as they may 
capture noise in the training data. Additionally, decision trees might struggle to capture intricate 
patterns and non-linear relationships as effectively as more sophisticated models [15]. 
 

 
Figure 10: Decision Tree Produced in the Investigation 

 
Random Forest Classifier 
The Random Forest Classifier model is an ensemble ML model that is comprised of multiple 
decision trees, much like a forest. It creates diverse subsets of the training data using 
bootstrapped sampling, constructing individual trees with randomly chosen features to mitigate 
overfitting [16].  

 
Figure 11: Random Forest Classifier Workflow (Gunay) 

 
The process begins by randomly selecting subsets of the training data through a technique 
called bootstrapped sampling. For each subset, a decision tree is built independently, employing 
a top-down, recursive approach to identify the best feature splits at each node. The randomness 
extends to the selection of a random subset of features at each node, promoting diversity 
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among the trees. During prediction, the individual trees' outputs are aggregated through a 
majority voting mechanism for classification, producing a final prediction that is more robust and 
less prone to overfitting than a single decision tree. The random forest classifier, as an 
ensemble method, can be tuned to a certain number of estimators. It combines the predictions 
of all the estimators to produce a more accurate single prediction.  
 
Typical decision trees are prone to overfitting the data set; however, the random forest 
classifier’s design allows this model to compensate and generalize for unseen data by 
aggregating predictions from multiple trees. This model excels at handling high-dimensional 
data and provides a measure of feature importance, aiding in variable selection [17].  
 
On the downside, random forests can be computationally expensive, particularly with a large 
number of trees in the forest. While they offer high predictive accuracy, the interpretability of the 
model decreases compared to individual decision trees. 
 
 
KNN 
K-Nearest Neighbors (KNN) is a versatile machine learning algorithm used for classification and 
regression. It assigns a data point to the majority class among its K nearest neighbors, 
determined by calculating distances in the feature space. The choice of "K" influences the 
number of neighbors considered for the decision. KNN is non-parametric, making no 
assumptions about data distribution, and relies on the entire dataset during both training and 
prediction.  
 
In this investigation, the KNN model has been tuned. When iterated between 1 and 5 neighbors, 
performance was maximized at 1 neighbor.  
 

 
Figure 12: KNN Model (Sachinsony) 
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During training, the algorithm stores the entire dataset, creating a "neighborhood" for each data 
point. In the prediction phase, the algorithm identifies the K nearest neighbors of a given data 
point using a distance metric, commonly the Euclidean distance. For classification, the majority 
class among the K neighbors determines the predicted class. KNN's adaptability to local 
patterns makes it suitable for non-linear relationships. 
 
KNN is an intuitive and easy-to-understand model, making it suitable for quick implementation 
and interpretation. It adapts well to local patterns and is non-parametric, making it effective for 
capturing non-linear relationships in the data. 
 
However, KNN can be computationally expensive, especially with large datasets, as it requires 
distance calculations for each prediction. It is sensitive to irrelevant features and can struggle 
with imbalanced datasets where one class dominates [18]. 
 
 
SVM 
Support Vector Machine (SVM) is a supervised machine learning algorithm used for both 
classification and regression tasks. The primary objective of SVM is to find a hyperplane in a 
high-dimensional space that best separates data points of different classes. In the context of 
binary classification, this hyperplane is the one that maximizes the margin, which is the distance 
between the hyperplane and the nearest data points (support vectors) of each class. 
 
 

 
Figure 13: SVM Model Workflow (Alkhaled et al.) 
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SVM uses a kernel trick to map the input features into a higher-dimensional space, making it 
possible to find a hyperplane that separates the data in this transformed space. Common kernel 
functions include linear, polynomial, and radial basis functions (RBF). When utilizing Google 
Colab to run the code applied to this dataset, the radial basis function is the default kernel 
function. Additionally, when tested across the 3 aforementioned functions, the radial basis 
function returned the best results, hence it was used for this exploration. 
 
For classification, once the hyperplane is determined, SVM assigns new data points to one of 
the two classes based on which side of the hyperplane they fall on. 
 
SVMs excel in high-dimensional spaces and are versatile due to the availability of different 
kernel functions. They are effective in capturing complex decision boundaries and can handle 
cases where the relationship between predictors and the target is non-linear [19]. 
 
On the downside, SVMs might perform poorly with noisy or overlapping data. Tuning SVM 
hyperparameters, such as the choice of kernel and regularization parameters, can be 
challenging and may require careful consideration. 
 
 
XGBoost 
XGBoost is another ensemble ML method that combines the predictive power of multiple other 
models. Gradient boosting is the underlying principle behind the XGBoost model, whereby the 
model builds decision trees and uses errors from the previous trees to improve the model in 
successive iterations.  
 

 
Figure 14: XGBoost Workflow (Guo et al.) 
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XGBoost works by iteratively building a series of decision trees, where each subsequent tree 
corrects the errors of the ensemble formed by the preceding trees. During training, XGBoost 
minimizes a specific loss function, incorporating both regularization terms and gradients of the 
loss with respect to the predictions. The algorithm employs a unique regularization term known 
as the "shrinkage" or "learning rate," controlling the contribution of each tree to the overall 
ensemble.  
 
XGBoost also introduces a novel feature that incorporates second-order partial derivatives, 
enhancing its capability to capture complex relationships and interactions in the data. The 
ensemble is constructed by combining the predictions of all the trees, and the final model 
provides a robust and accurate prediction. It provides valuable insights into feature importance, 
handles missing data effectively, and is scalable, making it suitable for large datasets [20]. 
 
Yet, XGBoost demands careful tuning of hyperparameters to prevent overfitting, and its 
computational intensity might be a drawback, particularly for real-time applications or 
resource-constrained environments. The complexity of XGBoost may lead to overfitting on 
smaller datasets. 
 
Performance Measurement 
To evaluate the efficacy of the different machine learning models utilized, 5 performance 
measurements were employed: Accuracy, Precision, Recall, F1, and AUC scores. The formulas 
for calculating these measurements can be found in the appendix. 

Figure 15: Logistic Regression Confusion Matrix 
 

Figure 16: Decision Tree Confusion Matrix 
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Figure 17: RFC Confusion Matrix 
 

Figure 18: KNN Confusion Matrix 
 

Figure 19: SVM Confusion Matrix Figure 20: XGB Confusion Matrix 
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Results and Discussion 

Classifiers  Accuracy Precision Recall F1 Score AUC 

RFC 0.9981 0.9962 1.0000 0.9981 0.9981 

XGBoost  0.9917 0.9837 1.0000 0.9918 0.9916 

Decision Tree 0.9523 0.9310 0.9783 0.9541 0.9922 

KNN (with 1 
neighbor) 

0.8802  0.8190 0.9785 0.8860 0.8795 

SVM  0.8641 0.8375 0.9062 0.8705 0.8638 

Logistic Regression  0.6802 0.7110 0.6155 0.9981 0.7443 

Table 2: Performance Comparison 
 
From Table 2, it is clear that all algorithms, barring logistic regression, have an acceptable level 
of accuracy. The random forest classifier is the most preferable model because of its higher 
level of accuracy, achieving 99.81% accuracy. It may be argued, however, that such a high level 
of accuracy may be attributed to the model overfitting. The accuracies were followed by the 
XGBoost (99.17%), Decision Tree (95.23%), KNN (88.02%), SVM (86.41%), and Logistic 
Regression (68.02%) models.  
 

 
Limitations 
Despite this investigation effectively demonstrating the extent to which different machine 
learning models can be applied in predicting the onset of strokes in patients, there are a few 
limitations to take into account.  
 
The scope of the study may be constrained by the availability and quality of the data, as 
inherent biases or confounding factors within the data or analysis techniques could potentially 
influence the outcomes.  
 
While certain classification models may demonstrate high accuracy, they often lack 
interpretability, making it difficult to understand how individual features contribute to the 
prediction outcomes. This "black-box" nature of some machine learning models means that, 
although we can observe the final prediction results, we cannot easily discern which features 
are most influential in tuning and optimizing the models. Consequently, the insights gained from 
these models are not fully transparent, which can be a significant drawback in medical and 
clinical applications where understanding the reasoning behind diagnosis is salient.  
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Conclusion 
In conclusion, this paper has investigated the application of machine learning (ML) techniques 
for predicting stroke risk using comprehensive patient datasets. The study utilized various 
classifiers, including logistic regression, decision trees, support vector machines (SVM), and the 
Random Forest Classifier (RFC), to identify the most effective model for stroke prediction. 
Through rigorous experimentation and evaluation, the RFC emerged as the top-performing 
classifier, demonstrating superior accuracy in predicting stroke risk with an impressive 99.81% 
accuracy, with the XGBoost model closely behind at 99.17%.  
 
Importantly, the methodologies and findings of this research are not confined to stroke prediction 
alone; they can be extended to other diseases and medical applications. By tweaking the 
procedure and adapting the features used for training, these machine learning models can be 
repurposed to predict a wide range of conditions, such as heart disease, diabetes, and certain 
types of cancer, and can even be tailored to forecast mental health disorders, such as 
depression and anxiety, by incorporating relevant behavioral and psychological parameters. 
Leveraging alternative and more thorough ML models such as Naïve Bayes, AdaBoost, Nearest 
Centroid, Voting Classifier, and multilayer perceptron may provide more conclusive results than 
the chosen subset of models in this study [21]. This expanded framework aims to boost both the 
reliability and overall performance of the predictive models.  
 
Incorporating medical imaging data, such as CT scans, into the prediction models can provide 
valuable insights and improve classification accuracy by leveraging visual information beyond 
simple parameters. Image classification through computer vision is an underdeveloped niche 
industry that poses significant advancements to medical applications.  
 
The findings of this study have significant implications for real-world healthcare applications. 
Identifying the best-performing ML model for stroke prediction can empower medical 
technologies to develop more accurate and reliable tools for detecting the onset of strokes. By 
leveraging the predictive capabilities of the RFC and other efficiently accurate machine learning 
models, healthcare providers can enhance early detection and intervention strategies, 
potentially reducing the incidence and severity of strokes and improving patient outcomes [22]. 
 
This study extends beyond its immediate findings in that showcasing the efficacy of ML 
techniques in stroke prediction underscores the importance of incorporating data-driven 
approaches into clinical decision-making processes. The adoption of advanced predictive 
analytics in healthcare can revolutionize patient care, facilitating proactive interventions, 
personalized treatments, and improved patient management strategies [23]. In an ideally utilized 
situation, this would save the lives of many diagnosed patients and ensure they do not suffer 
any fatal or radical consequences. 
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Appendix 

A.1  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

A.2  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

A.3  𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

A.4  𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ·  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

A.5 AUC Value:  𝑅𝑂𝐶 −  𝐴𝑈𝐶 =  
0

1

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅

A.6 (TPR = true positive rate) 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁  

A.7  (FPR = false positive rate) 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁
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