
Using FSR Data for Refined Early Detection of Parkinson’s Disease with Gait Analysis 
Rohan Pavuluri 

 

Abstract 

Early detection of Parkinson’s disease (PD) is important for improving patient quality of life and 
slowing disease progression. This research explores the use of force-sensitive resistors (FSRs) 
in gait analysis to identify early indicators of PD. We use the Gait and Neurological Disorders 
(GaitND) dataset from PhysioNet. This dataset includes gait data from individuals with 
Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and healthy controls. 
Analyzed key time-series features such as stride intervals, swing intervals, stance intervals, and 
double support intervals for the left and right limb. Also we used advanced machine learning 
techniques like ensemble methods and optimization algorithms to enhance classification 
accuracy. Using a genetic algorithm we achieved an accuracy of 81.08%. The findings indicate 
the potential of FSR-based wearable technologies for non-invasive and continuous monitoring of 
gait patterns. This research also shows the feasibility of using FSRs into other types of 
diagnostic tools for better PD detection and for early prevention. 

Introduction 

Background and Context 
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive motor 
and non-motor symptoms and it significantly impacts a patient's quality of life [1]. As the disease 
advances, it leads to severe motor dysfunction, cognitive decline, and autonomic disturbances 
[2]. Early detection and diagnosis are important for management and treatment. They can 
potentially slow disease progression and improve outcomes for the patient. However, the use of 
traditional diagnostic methods like clinical neurological examinations and imaging techniques 
only identify PD in later stages when symptoms are pronounced and irreversible neuronal 
damage has happened. Intervention can be most beneficial at early stages because this 
diagnostic delay demonstrates the need for innovative approaches to detect the disease in its 
earliest [3] [4]. 
 
Gait, the manner in which a person walks, is a prominent motor symptom affected by PD and 
can serve as a vital indicator of the disease [5]. Some gait disturbances in PD are bradykinesia 
(slowness of movement), shuffling steps, and reduced arm swing. These may appear before 
other more obvious symptoms. Because of this gait analysis is useful for early PD detection. 
This analysis can provide details into motor function and early biomarkers of the disease. 
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Figure 1: Gait Cycle [6] 

Problem Statement and Rationale 

Despite advancements in diagnostic technologies, early detection of Parkinson’s disease 
remains a significant challenge. Current methodologies are either resource-intensive or 
dependent on observable symptomatic progression, delaying critical intervention opportunities. 
The underutilization of wearable sensors such as FSRs in personalized, predictive diagnostics 
demonstrates a gap in existing research. Furthermore, some current machine learning models 
have already been applied to gait data but their predictive accuracy is suboptimal due to limited 
use of ensemble methods and advanced algorithms for checking accuracy. This study seeks to 
address these challenges by using FSR-based gait data from the Gait and Neurological 
Disorders (GaitND) dataset with innovative ensemble techniques to enhance prediction 
accuracy for early Parkinson’s diagnosis. 

Significance and Purpose 

Recent advancements in wearable technology may be promising for continuous and 
non-invasive monitoring of gait patterns [7]. FSRs are studied and found to be advantageous for 
gait analysis [8]. FSRs are thin, flexible sensors that measure the force exerted on them. This 
makes them ideal for their location into wearable devices such as insoles or smart footwear [9]. 
Their high sensitivity and ease of use allow for it's use in precise detection of subtle changes in 
gait dynamics. Subtle changes can be indicative of early PD. The ease of using wearable 
devices and FSRs in everyday life allows for continuous monitoring, and this offers real-time 
data on a patient's gait and movement patterns [10]. This real-time data collection is important 
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for noticing the onset of symptoms that may fluctuate or worsen progressively, which could 
provide a more comprehensive picture of the disease's impact over time. 

 
Figure 2: Force-sensitive resistors [11] 

 
The application of Artificial Intelligence (AI) in this context is promising, as it allows for the 
processing and analysis of data with greater accuracy and efficiency than traditional methods 
[12]. AI algorithms can be trained to recognize complex patterns and subtle deviations in gait, or 
in particular features which we present later, that may be indicative of early PD [13]. This 
capability enhances the early diagnosis and allows clinicians to initiate treatments that can slow 
the disease and improve daily life for the patient [14]. This paper introduces an altered 
perspective on current diagnostic practices with the use of potential of wearable technology and 
AI for early disease detection. I analyzed gait data captured by FSRs and used AI algorithms to 
detect patterns. In doing so, I aimed to identify early changes in gait that could be indicative of 
the onset of Parkinson’s disease before more severe symptoms develop. 

Objectives 

The main objectives in this research are: 
● Analyze time-series gait data from the GaitND dataset. (Stride, swing, stance, and double 

support intervals) 
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● Develop an ensemble machine learning model tested by various classification algorithms 
to get the highest predictive accuracy. 

● Determine the effectiveness of force-sensitive resistors (FSRs) as a tool to continuously 
monitor and early detect Parkinson’s disease. 

● Explore the applications of the system in real-world diagnostics. 

Scope and Limitations 

The scope of this study is limited to gait data from the GaitND dataset. This dataset contains 
stride intervals, swing intervals, stance intervals, and double support intervals for the left and 
right sides. The data provides comprehensive gait information but is of a relatively small sample 
size (only containing 64 records) and this may reduce the generalizability of the findings. There 
also may be inherent biases in machine learning algorithms that affect the validity of the 
findings. 

Theoretical Framework 

This study is based in the theoretical framework of biomechanical analysis and predictive 
modelling. Our application of machine learning algorithms allows for greater understanding 
between gait patterns and neurodegeneration. Additionally, our use of an ensemble model 
allows us to aggregate predictions from multiple models which improves predictive reliability. 

Methodology Overview 

First, we use the GaitND dataset to extract and preprocess gait features. Features such as Gait 
Stability Ratio, Right Swing Stance Ratio, and Left Swing Stance Ratio are combined using 
ensemble techniques, including genetic algorithms and random search to optimize weights and 
enhance our prediction accuracy.  

Methods 

Research Design 

The study used a cross-sectional observational design, analyzing pre-collected gait data from 
the GaitND dataset. This approach enabled a comparative analysis of Parkinson’s disease 
patients and healthy controls using machine learning techniques to evaluate predictive 
accuracy. 

Participants & Data Collection 

The Gait and Neurological Disorders (GaitND) dataset from PhysioNet is a comprehensive 
collection of gait data; this data set aims in quantifying gait dynamics in individuals with 
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neurodegenerative diseases [16]. The dataset includes records from 64 subjects, categorized 
into four groups: Parkinson’s disease (n = 15), Huntington’s disease (n = 20), amyotrophic 
lateral sclerosis (ALS) (n = 13), and healthy controls (n = 16). Of which I use the 15 Parkinson’s 
disease data and the 16 healthy controls. The gait data were collected using force-sensitive 
resistors (FSRs), which provide an output proportional to the force exerted under the foot. The 
raw signals from these sensors were processed to derive stride-to-stride measures of footfall 
contact times. The dataset includes four files per record, identified by the subject group (e.g., 
”park” for Parkinson’s disease) and an arbitrary ID number [16]. 
 
These time series have not been filtered, allowing for detailed analysis and potential application 
of various signal processing techniques. 
 
Additionally, the dataset includes a clinical description file (subject-description.txt) which 
provides detailed clinical information for each subject. This includes variables such as age, 
gender, height, weight, walking speed, and disease severity or duration. For Parkinson’s 
disease patients, the Hoehn and Yahr score is provided, indicating the stage of the disease. 
While control subjects are assigned an arbitrary value of 0 [16]. 

Variables(Features) and Measurements 

Feature extraction plays an important role in using raw gait data to determine meaningful 
metrics that can be used for predicting Parkinson’s disease (PD). Given that gait abnormalities 
are one of the hallmark symptoms of PD, force-sensitive resistors (FSRs) provide data by 
capturing the forces exerted by the foot during walking [17]. In this study, we extract features 
related to temporal, spatial, and kinetic aspects of gait to analyze the distinctive patterns in PD 
patients compared to healthy controls [6] 
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Figure 2: Gait Features [6] 

1) Temporal Features 
 Temporal features provide insights into the timing of different phases of the gait cycle, 
which are often altered in Parkinson’s patients. 

● Stride Interval (Left and Right): The time duration between consecutive footfalls of 
the same foot. This feature helps in identifying irregularities in gait rhythm. 

  
(1) 

 
● Swing Interval (Left and Right): The time duration during which the foot is off the 

ground. Parkinson’s patients often exhibit reduced swing times. 
 

 (2) 
 

where  is the time when the foot leaves the ground, and  is the 𝑡
𝑡𝑜𝑒−𝑜𝑓𝑓

𝑡
ℎ𝑒𝑒𝑙−𝑠𝑡𝑟𝑖𝑘𝑒

time when the foot initially contacts the ground. 
● Stance Interval (Left and Right): The time during which the foot is in contact with 

the ground. Prolonged stance times are a common characteristic in PD patients. 
 

(3) 
 

2) Spatial Features 
Spatial features relate to the distribution and symmetry of forces applied during walking. 
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● Foot Pressure Distribution: The average pressure distribution across different 
regions of the foot (e.g., heel, midfoot, forefoot). Altered pressure distributions can 
be indicative of compensatory mechanisms in PD patients. 

● Symmetry Index: A measure of the symmetry between left and right foot 
pressures. Parkinson’s disease often leads to asymmetrical gait patterns. 

 
 

(4) 
 
 

3) Kinetic Features 
Kinetic features focus on the forces generated during walking and how they change over 
time. 

● Peak Pressure (Left and Right): The maximum force exerted by each foot during 
the gait cycle. Reduced peak pressures can indicate weakened muscular control. 

● Force-Time Integral: The area under the force-time curve represents the total force 
exerted during the stance phase. This feature helps in understanding the overall 
force production capability of the individual. 

● Variability of Force: The standard deviation of forces recorded across multiple gait 
cycles. Increased variability is often observed in Parkinson's patients due to 
inconsistent gait patterns. 

 
 
 

(5) 
 
 

Procedure 

Force-sensitive resistors (FSRs) were used to measure pressure distribution and kinetic 
features in the gait data. These sensors detect changes in resistance as a function of applied 
force which makes them ideal for capturing foot pressure during walking. The FSRs were 
strategically placed under specific regions of the foot—heel, midfoot, and forefoot—to capture 
temporal and kinetic data relevant to gait analysis [17]. 
 
The raw FSR data was recorded in the form of continuous time series, where the pressure 
changes were logged at predefined intervals for each footstep. From this data, key features 
such as foot pressure distribution, peak pressure, and the force-time integral were extracted. 
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Each FSR output was converted into force measurements using the sensor’s calibration curve, 
ensuring accurate quantification of the pressure exerted during walking. 
 
To ensure consistency and comparability across subjects, the raw FSR outputs were 
normalized. Given the variability in gait patterns due to differences in subject characteristics 
such as weight, height, and walking speed, normalization was essential for reducing the effect of 
these confounding factors. 
 
Following the extraction of features, a feature selection process was carried out to identify the 
most relevant predictors of Parkinson’s disease. Statistical methods, such as correlation 
analysis, were employed to reduce dimensionality and highlight the features with the highest 
predictive power [6]. The features that consistently showed strong correlations with PD 
diagnosis are the Double Support Interval, Swing Interval Variability, and Peak Pressure on the 
left foot. These features were then used as inputs to the learning models. By analyzing these 
features, we can understand the underlying biomechanics of Parkinson’s gait and improve the 
accuracy of early diagnosis. These features will then be used in conjunction with machine 
learning algorithms to develop predictive models aimed at early diagnosis and monitoring of 
Parkinson’s disease. 

Data Analysis 

In this paper, multiple machine learning techniques were explored to predict PD based on the 
gait data that has been obtained from force-sensitive resistors. The dataset was split into 
training and testing data with 80% of the points used as training and the remaining 20% as 
testing data. 
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Figure 3: Side by side boxplots of features relation with patient or control. 
 

1) Individual Classifier Model Performance: By quick inspection of the parallel boxplots 
generated in feature extraction, we note that the most differing 3 features are Gait 
Stability Ratio, and Left Swing/Stance Ratio, Right Swing/Stance Ratio.  
 
With this information we quickly test just based off values in each of the respective 
columns independently of each other and obtain the following raw percentages of 
accuracy in identification: 

 

Gait Stability Ratio 65.32% 

Left Swing/Stance Ratio 67.89% 

Right Swing/Stance Ratio 42.21% 

Table 1: Individual classifier accuracy on three features 
 

From this we note that Gait Stability Ratio and Left Swing/Stance Ratio seemed far more 
promising than Right Swing/Stance Ratio so for further overall predictive power, a brute 
force manual ensemble approach was applied. 
 

2) Manual Ensemble: This technique was very primitive and just relied on an initial guess on 
weights assuming that Gait Stability and Left Swing/Stance would be better by giving 
them 0.4 weights each and Right Swing/Stance a 0.2 weight. This weightage determines 
how much of the final chance that each feature can modify.  
 
 

Manual Ensemble Accuracy 72.91% 

Table 2: Manual ensemble overall accuracy with weights [0.4, 0.4, 0.2] 
 

Even with initial arbitrary values, a significantly higher accuracy was obtained, leading us 
to seek a more definitive approach. In the next approach, we iteratively run through all 
possible weights which is more brute force. 

 
3) Iterative Brute Force / Dynamic Optimization Ensemble: In this approach, we quickly note 

that smaller and more precise intervals take exponentially longer to run, which motivates 
us to look for more faster optimizations. Regardless this method gave the following data: 
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Iterative Brute Force / Dynamic Optimization 
Ensemble Accuracy 

73% 

Table 3: Iterative brute force or dynamic optimization ensemble accuracy 
 

● Weights: [0.01, 0.495, 0.495] 
○ 0.01 was for Gait Stability 
○ 0.495's were for Left and Right Swing/Stance. 

 
Surprising to see a similar accuracy regardless of vastly different weights, but only 
causing us to understand that we may need more features in our analysis. However, with 
3 features it already takes an astronomical amount of time to get more precise, so for 13 
it would take even longer. To quicken the speed we start using advanced optimization 
techniques. 

 
4) Advanced Optimization Techniques: To further improve performance, optimization 

methods such as random search, evolutionary algorithms, and Bayesian optimization 
were used. 

a) Scipy Optimization:  
Using the scipy.optimize library, weights were assigned to all 13 features resulting 
in a slight improvement to 73.04%. 

b) Random Search: 
A random search method was employed to explore the solution space, achieving a 
significant improvement in accuracy: 

- After 200 iterations, the best accuracy was: 78.44%. 
- The corresponding best weights were: [0.09484909, 0.11365376, 

0.00501936, 0.0895144, 0.12566684, 0.16114454, 0.09320969, 
0.06588727, 0.01492724, 0.05828005, 0.04906177, 0.11174149, 
0.0170445]. 

c) Evolutionary Algorithms (Genetic Algorithm): 
Finally, a genetic algorithm was applied using the DEAP library to optimize the 
weight assignment across all 13 features. This method achieved the best overall 
accuracy of 81.08%.  

- The best weights identified were: [0.06394503, 
0.19941245, 0, 0.13801787, 0.13534947, 
0.16612872, 0, 0.01421639, 0.01052521, 
0.14310884, 0.00938601, 0.11991001, 0]. 
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Figure 4: Correlation matrix for 13 different features. 

Ethical Considerations 

The study followed ethical guidelines, we used publicly available data from PhysioNet. The 
dataset includes anonymous records, ensuring confidentiality. Ethical concerns related to 
participant consent and data use were addressed by the original dataset creators. This 
secondary analysis aligns with the FAIR (Findable, Accessible, Interoperable, and Reusable) 
principles. 
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Discussion 

Restatement of Key Findings 

This study aimed to evaluate the early detection of Parkinson's disease (PD) using the analysis 
of gait data, force-sensitive resistors (FSRs), and machine learning models. The most notable 
finding was the significant improvement in prediction accuracy through the use of an ensemble 
approach. Our genetic algorithm method achieved a peak accuracy of 81.08%. Additionally, 
gait-specific features such as stride intervals, swing intervals, and stance intervals were 
identified as key indicators of PD progression, supporting their use in predictive modeling. 

Implications and Significance 

The findings of this research could result in the development of more effective early intervention 
strategies and lead to improved diagnostic tools and wearable devices. Such devices then 
contribute to better management of Parkinson's disease which improves lives of patients. By 
using advanced technology with traditional clinical practices, this approach aims to revolutionize 
the early diagnosis and monitoring of PD; this allows timely interventions and improving the 
quality of life for patients [12].  As such, this research contributes to the field of 
neurodegenerative disease management and also the potential of using technology with 
healthcare [15]. 

Connection to Objectives 

The primary objective was to determine if the integration of advanced computational methods 
and FSR-data could enhance the early detection of PD. This objective was successfully met, as 
demonstrated by our optimized ensemble model's performance. However, the study also 
revealed unexpected disparities in individual model accuracies, for example, the low reliability of 
the Right Swing Stance Ratio model (42.21%). 

Limitations 

Once again, there were limitations in this study.  
1. The GaitND dataset only has 64 records which may not fully represent the diverse 

characteristics of patients with PD over different demographics and stages of disease. 
2. The reliance on such a dataset reduces our generalizability of results. 
3. The weighting approaches may introduce biases. 
4. The use of FSRs may face practical challenges in terms of development since they are 

not widely used for long-term patients. 
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Closing Thought 

The use of wearable technology and machine learning gave unprecedented opportunities for 
advancing early diagnostic tools for neurological disorders. Future research can introduce more 
accessible and personalized healthcare solutions after addressing our identified limitations. The 
findings of this study demonstrated the potential of innovative methodologies in enhancing the 
quality of life for individuals with Parkinson's disease. 
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