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 Abstract 

 This paper extends the classical Stable Marriage Problem (SMP) by incorporating the concept 
 of preference ties, where participants can equally rank multiple options. Building upon the 
 foundational works of Gale and Shapley, the paper presents a modified algorithm that allows 
 proposers to simultaneously approach multiple equally preferred choices, with a subsequent 
 selection process when multiple proposals are accepted. Using concrete examples with a  5 ×  5 
 preference matrix, the paper demonstrates how the proposed extension incorporates preference 
 ambiguities while preserving termination and stability. The analysis reveals important 
 implications for the algorithm’s optimality properties and complexity. This extended algorithm 
 has significant applications in college admissions, medical residency matching, and other 
 allocation problems, offering a more practical and adaptable framework for modern matching 
 systems where strict preference orderings are unrealistic. 

 1. Introduction 

 The Stable Marriage Algorithm (SMA), first introduced by David Gale and Lloyd Shapley in 
 1962, revolutionized the way we think about matching problems in computer science. In 2012, 
 the Nobel Prize in Economics was awarded to Lloyd Shapley and Alvin Roth for the “theory of 
 stable allocations and the practice of market design.” While originally designed to pair equal 
 numbers of men and women in stable marriages where no two people would prefer each other 
 to their assigned partners, the algorithm has found widespread applications in various real-world 
 scenarios, from matching medical residents to hospitals to assigning students to schools. 
 However, the classical algorithm assumes that all participants have strict preferences with no 
 ties allowed, which often doesn’t reflect real-world situations. 

 This paper explores an extended version of the Stable Marriage Algorithm that accommodates 
 ties in preferences, making it more applicable to real-world scenarios. In many practical 
 applications, a participant may view multiple choices as equally desirable—for instance, a 
 student might equally prefer two different universities, or a hiring manager might consider 
 several candidates to be equally qualified. We analyze how this modification affects the 
 algorithm’s properties, including its termination conditions, stability guarantees, and optimality 
 characteristics. Special attention is given to how allowing ties impacts the traditional boy-optimal 
 property of the algorithm and introduces new challenges in achieving stable matchings. 

 2. The Assignment Criteria 

 Matching problems arise in various applications, from college admissions to hospital residency 
 placements and resource allocation systems. A common formulation involves assigning  𝑛 
 applicants to  colleges, where each college has a fixed number of available spots and ranks  𝑚 
 applicants based on preferences. Applicants, in turn, rank colleges they would consider 
 attending in their order of preference. 
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 While a straightforward preference-based assignment might seem ideal, conflicts arise when 
 mutual preferences do not align, leading to unstable assignments—cases where an applicant 
 and a college would both prefer to be matched with each other over their assigned pair. To 
 ensure fairness and efficiency, the concept of stability is introduced, ensuring no 
 applicant-college pair has incentive to deviate from the final assignment. An assignment is 
 optimal if no other stable matching provides a better outcome for any applicant. 

 An elegant solution would be an independent, trusted, and centralized clearinghouse versus the 
 current decentralized college admissions system. Such a clearinghouse approach would 
 immediately yield multiple benefits, including the elimination of strategic behavior (as students 
 wouldn’t need to guess about “reach” versus “safety” schools), the reduction of application 
 inflation, a more predictable yield for colleges, and lower costs for both sides (with fewer 
 applications to process and submit). In fact, this approach has already demonstrated success in 
 other contexts, such as medical residency matching. However, its implementation in college 
 admissions faces significant obstacles such as early decision programs, holistic evaluation 
 criteria, and varying institutional priorities. 

 To establish some groundwork, an assignment of applicants to colleges is considered unstable if 
 there exist two applicants who are assigned to colleges  and  , respectively, but one applicant  𝐴  𝐵 
 prefers  over  , and college  also prefers this applicant over their current assignment.  𝐴  𝐵  𝐴 
 Additionally, a stable assignment is called optimal if every applicant is at least as well off under it 
 as under any other stable assignment. 

 3. Related Work 

 The classical SMP provides a foundational algorithm for achieving stable matchings in two-sided 
 markets where participants have strict preferences. Since its introduction, SMP has been widely 
 applied to real-world allocation problems such as medical residency matching (Roth & 
 Peranson, 1999) and college admissions. However, the assumption that all participants provide 
 strict preference rankings is often unrealistic, as real-world decisions frequently involve 
 indifference between multiple options. Irving (1994) extended the problem by allowing 
 preference ties and introduced algorithms that find stable matchings under weak and strong 
 stability criteria. Later, Manlove (2013) analyzed the computational complexity of handling 
 indifferences in SMP, showing that while finding weakly stable matchings remains 
 polynomial-time solvable, computing certain optimal solutions becomes NP-hard in some 
 variants. 

 More recent work has explored tie-breaking mechanisms and their impact on fairness and 
 efficiency in matching markets. Abdulkadiroğlu et al. (2009) examined how allowing preference 
 ties affects school choice mechanisms, emphasizing the need for stable, strategy-proof 
 solutions in real-world applications. Studies in market design (Roth, 2008) have further 
 investigated how preference ties influence outcomes in centralized matching markets, such as 
 residency placement and school admissions. Our work builds upon these foundations by 
 modifying the Gale-Shapley algorithm to systematically handle ties in proposer preferences 
 while preserving termination guarantees and stability. Unlike previous approaches that require 
 external tie-breaking rules, our modification allows proposers to submit multiple simultaneous 
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 proposals, providing a more practical approach for modern matching systems where preference 
 ties are unavoidable. 

 4. The Stable Marriage Problem 

 In exploring the existence of stable assignments, Gale and Shapley first examined a special 
 case that would become foundational to their solution: a scenario where the number of 
 applicants equals the number of colleges, and each college has a quota of one student. While 
 this simplified case seemed unnatural for college admissions, they realized it mapped perfectly 
 to another problem—matching marriage partners in a community with equal numbers of men 
 and women. In this marriage analogy, each person ranks all potential partners of the opposite 
 sex according to their preferences, and the goal is to find a “stable” set of marriages where no 
 two people would prefer each other to their assigned partners. This reframing of the problem as 
 a marriage matching scenario provided a clearer way to analyze and solve the underlying 
 mathematical challenge of finding stable assignments. Hence, we are going to talk about this 
 variant of the matching problem that has an elegant solution and that is frequently used in 
 practice. Now, let’s formalize the statement of the stable marriage problem. 

 In this setting, there are  boys and  girls. We assume the number of boys and girls is the  𝑛  𝑛 
 same. Each boy has his own ranked preference of girls. Each girl has her own ranked 
 preference of boys. The lists are complete and have no ties. Each boy ranks every girl and vice 
 versa. 

 The end goal is to pair each boy with a unique girl so that there are no rogue couples. That is, to 
 find a perfect matching so that every boy and girl are paired up one to one, with no potential for 
 both to defect. Let’s see if we can figure out a method for finding a stable match by looking at 
 the preference matrix below, where in each cell  we have the ordered pair (  ) where  𝑥 ,  𝑦  𝑥 
 is Boy  ’s ranking of Girl  , and  is Girl  ’s ranking of Boy  .  𝑖  𝑗  𝑦  𝑗  𝑖 

 Table 1: Preference Matrix with no ties allowed 

 Let’s try to use a greedy algorithm to find the matching. In this case, the greedy algorithm will 
 have each boy pick his favorite girl that remains by the time his turn comes up. Running the 
 greedy algorithm on our example, boy B1 picks his favorite girl G3, boy B2 picks his favorite girl 
 G1, boy B3 picks his favorite girl G4, boy B4 picks his favorite remaining girl, G2 (since his top 3 
 choices are already taken), and finally boy B5 picks his favorite remaining girl (which at this 
 point, is the only remaining girl), G5. 
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 Now, let’s see if there is a rogue couple. Boys B1, B2, and B3 are matched up with their 
 preferred girls, leaving them satisfied. However, boy B4 is not satisfied with G2, his fourth 
 choice. He approaches G1, but she rejects him since she prefers B2. In fact, she ranked B4 last, 
 making a pairing between them highly undesirable. He runs into his first choice, G3, and she 
 prefers him to B1, who is way down on her list. Evidently, there exists an interesting situation 
 here. Both B4 and G3 prefer each other to their own partners. We could try to patch things up 
 and pair B4 with G3 and then G2 with B1, but it’s not clear that we would reduce the number of 
 rogue couples. It happens that in this case pairing up B4 and G3 is a satisfactory action to do. 
 Indeed, this is getting more and more complicated. 

 How about using an algorithm that is based on induction (or recursion)? Pair boy B1 with girl G3 
 and solve the rest by induction. By the induction hypothesis, the only rogue couples would 
 involve B1 or G3. However, they can't involve B1, since he got his first choice. On the other 
 hand, they might well involve G3 since B1 might be her last but one choice. 

 Induction would work if there were some boy and some girl who each ranked the other first. If 
 there were such a boy and girl, then they would have to get paired with each other, or they 
 would be a rogue couple. However, there might not be such a boy and girl—all too often, people 
 do not like those that like them! 

 5. Gale-Shapley Algorithm 

 It turns out that finding a good way of pairing up the boys and girls can be tricky. However, the 
 best approach is to use the Gale-Shapley Algorithm, with its method outlined below. The mating 
 ritual takes place over several days (or rounds). The idea is that each of the boys go after the 
 girls one by one, in order of their individual preference, crossing off girls from their list as they 
 get rejected. Provided below is a more detailed specification. 

 To define initial conditions, each of the  boys have an ordered list of the  girls according to his  𝑛  𝑛 
 preferences. Each of the girls has an ordered list of the boys according to her preferences. 
 Every day, in the morning, each girl stands on her balcony. Each boy then stands under the 
 balcony of his favorite girl whom he has not yet crossed off his list and serenades. If there are 
 no girls left on his list, he stays home. In the afternoon, girls who have at least one suitor say to 
 their favorite from among the suitors that day something along the lines of, “I need some time, 
 please come back tomorrow.” To the others, they say “No, I will never marry you!” In the 
 evening, any boy who hears “No” crosses that girl off his list and goes home. Only, they will 
 come back the next morning in search of their next option. 

 So, we can now start applying the Gale-Shapley Algorithm to the preferences shown in Table 1 
 above. In Round 1, B1 proposes to G3 (his #1), B2 proposes to G1 (his #1), B3 proposes to G4 
 (his #1), B4 proposes to G1 (his #1), and B5 proposes to G1 (his #1). At this stage, G1 has 
 received 3 proposals from B2, B4, and B5. G1 ranks them in descending order of preference: 
 B5 (2), B2 (3), then B4 (5). So, G1 keeps B5 (her best option) and rejects B2 and B4. The 
 current status is as follows: G1 keeps B5 on hold, G3 keeps B1 on hold, G4 keeps B3 on hold, 
 G2 and G5 have no proposals yet, and B2 and B4 have been rejected and must propose to their 
 respective next choices. 
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 In Round 2, B2 proposes to G2 (his #2) and B4 proposes to G3 (his #2). G3 has now received 2 
 proposals from B1 and B4. G3 ranks them as B4 (1) then B1 (4). G3 keeps B4 (her best option) 
 and rejects B1. The current status is as follows: G1 keeps B5 on hold, G2 keeps B2 on hold, G3 
 keeps B4 on hold, G4 keeps B3 on hold, G5 has no proposals yet, and B1 has been rejected 
 and must propose to his next choice. 

 In Round 3, B1 proposes to G2 (his #2). G2 has received 2 proposals from B2 and B1 and ranks 
 them as B1 (3) then B2 (2). G2 keeps B2 (her best option) and rejects B1. The current status is 
 as follows: G1 keeps B5 on hold, G2 keeps B2 on hold, G3 keeps B4 on hold, G4 keeps B3 on 
 hold, G5 has no proposals yet, and B1 has been rejected again and must propose to his next 
 choice. 

 In Round 4, B1 proposes to G5 (his #3). The current status is as follows: G1 keeps B5 on hold, 
 G2 keeps B2 on hold, G3 keeps B4 on hold, G4 keeps B3 on hold, and G5 keeps B1 on hold. 
 All girls have received proposals, and each girl now has one unique proposal only, meaning they 
 accept these final proposals and the algorithm terminates. 

 The final stable matching goes as follows: B1 and G5, B2 and G2, B3 and G4, B4 and G3, and 
 B5 and G1. This is a stable matching because no boy and girl who aren’t matched with each 
 other would both prefer each other. 

 6. Extending for Ties: Modified Algorithm 

 We propose an extension to handle ties in preferences, with the key modifications going as 
 follows. To start, we introduce a new preference structure: instead of strict rankings, participants 
 can now group their preferences into ties (i.e. Tier 1 equates to most preferred and can contain 
 multiple choices, Tier 2 equates to second most preferred, and so on). Next, we introduce a 
 modified proposal stage. When a participant has ties in their preferences, they can propose to 
 all equally ranked choices simultaneously. If multiple proposals are received, the receiver must 
 then choose one based on preference, with rejected participants returning to the pool. Finally, 
 we introduce an example with ties. For example, the following table summarizes the ranking 
 matrix of 5 boys (  ) and 5 girls (  ), where those rankings that are tied by the boys are shown 
 bolded.   Without lack of generality, we assume that only the boys are allowed to have ties and 
 not the girls, since in this setting we assume the boys are the ones who propose to the girls and 
 not the other way around. 

 Table 2: Preference Matrix with Ties Allowed 
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 For example, the cell (B1, G1) is represented by (3, 4), meaning B1ranks G1 as his #3 choice, 
 while G1 ranks B1 as her #4 choice. Let’s identify each boy’s preferences first and then go 
 through the modified Gale-Shapley algorithm. 

 In Round 1, B1 proposes to G3 (his #1), B2 proposes to both G1 and G2 (tied #1s), B3 
 proposes to G4 (his #1), B4 proposes to G1 (his #1), and B5 proposes to G1 (his #1). The 
 current tentative matches after Round 1 goes as follows: G1 keeps B5 (since G1 ranks B5 as 
 #2, better than B2 #3 and B4 #5) and rejects B2 and B4, G2 keeps B2, G3 keeps B1, G4 keeps 
 B3, and G5 is unmatched. 

 In Round 2, B4 (rejected from G1) must propose to his next choice. B4’s next choices are G3 
 and G4 (tied at #2). However, G3 already has B1 (whom she ranks as #4), and G4 already has 
 B3 (whom she ranks as #3). G4 ranks B4 as #4, so she keeps B3. Notably though, G3 ranks B4 
 as #1, so she accepts B4 and releases B1. 

 In Round 3, B1 (rejected from G3) must propose to his next choice. B1 proposes to G2 (his #2), 
 where G2 ranks B1 as #3 versus the current B2 whom she ranks as #2. Therefore, G2 keeps 
 B2. 

 In Round 4, B1 must now propose to either G1 or G5 (tied at #3). G1 has B5 (whom she ranks 
 #2) and G5 is unmatched. Logically, B1 proposes to G5, and they match. 

 The final stable matching goes as follows: B1 and G5, B2 and G2, B3 and G4, B4 and G3, and 
 B5 and G1. 

 7. Algorithm Properties with Ties 

 7.1 Termination 

 We now provide a formal proof that the modified Gale-Shapley algorithm with preference ties 
 terminates after a finite number of rounds. 

 Theorem 1:  The modified Gale-Shapley algorithm with preference ties terminates after at most 
 steps, where  is the number of participants on each side.  𝑛 

 Proof: 

 We begin by defining some key variables to track the algorithm’s progress. Let  be the set 
 of all pairs  such that boy  has proposed to girl  by the end of round  . Let  be  𝑡 
 the total number of rejections that have occurred by the end of round  .  𝑡 

 First, we observe that for any boy  and girl  , the pair  can enter the set  at most  𝑃 
 once during the algorithm’s execution, as boys never propose to the same girl twice. Since there 
 are  boys and  girls,  is bounded above by  . In each round of the algorithm, at least one  𝑛  𝑛 
 of the following must occur: either a new proposal is made (i.e.,  ) or a girl 
 switches from one boy to another, causing a rejection. 
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 When a boy has ties in his preference list, he may make multiple proposals simultaneously. Let 
 be the maximum number of tied preferences for any boy. In the worst case, a boy proposes to  𝑘 
 girls in a single round. However, this still only contributes  elements to  , and each boy can  𝑘  𝑘  𝑃 

 make at most  proposals in total across all rounds.  𝑛 

 For termination, we need to bound the number of rejections. When a girl receives multiple 
 proposals, including one from a boy she currently holds, she can reject at most  boys in a 
 single round. Each rejection leads to a new proposal in a subsequent round, or the boy has 
 exhausted his list. 

 The key insight is that the sum  strictly increases with each round until termination. 
 Since  and each rejection leads to one fewer potential future proposal, the maximum 
 number of rejections is also bounded by  . 

 Therefore, the total number of rounds is bounded by  (for proposals) +  (for the initial round 
 of simultaneous proposals). To account for ties, we observe that while a boy may make multiple 
 simultaneous proposals, this doesn't increase the upper bound on total proposals beyond  . At 
 most, it front-loads some proposals that would have occurred in later rounds in the classical 
 algorithm. 

 Finally, we need to consider the case where a girl with tied preferences receives multiple 
 acceptances and must choose one. This selection step adds at most one additional operation 
 per round but doesn’t affect the asymptotic bound on the number of rounds. Therefore, the 
 modified algorithm terminates after at most  steps, with the additional  term 
 accounting for potential overhead from handling ties. 

 Corollary 1:  If each boy has at most one tie in his preference list (as specified in our constraint), 
 and each tie involves only two girls, the algorithm terminates in  . 

 This modified algorithm converges more slowly than the classical algorithm in the worst case but 
 still maintains polynomial time complexity. The introduction of ties changes the nature of the 
 termination condition: rather than merely waiting until every girl has at most one suitor, we must 
 also resolve situations where boys with ties must select among multiple accepting girls. 

 7.2 Stability 

 With this in mind, the definition of stability needs modification. A matching is now stable if there 
 exists no pair  where  strictly prefers  to their current match,  strictly prefers 
 to their current match, or neither is in a tie situation with their current match. We now provide a 
 formal proof that the modified Gale-Shapley algorithm with preference ties produces stable 
 matchings according to our extended definition of stability. 
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 To start, we provide two key definitions. First, for a matching  with ties in preferences, we 
 define the following: for a boy  and girls  and  , we write  if  strictly prefers  over 

 and  if  is indifferent between  and  . Similarly, for a girl  and boys  and  , we 
 write  if  strictly prefers  to  , and  if  is indifferent between  and  . 

 Second, a matching  is stable under preference ties if there exists no pair  such that  is 
 matched to some  in  , and  , and  is matched to some  in  and  . We 
 refer to such a pair  as a “blocking pair” or “rogue couple.” 

 Theorem 2:  The modified Gale-Shapley algorithm with preference ties produces a stable 
 matching. 

 Proof: 

 We proceed by contradiction. Suppose the algorithm terminates with a matching  that is not 
 stable. Then there exists a blocking pair  where boy  is matched to girl  in  , and 
 strictly prefers  to  , and girl  is matched to boy  in  , and  strictly prefers  to 

 . We consider the execution history of the algorithm to derive a contradiction, as 
 follows. 

 Case 1:  Boy  proposed to girl  during the algorithm. Since  is not matched with  in the final 
 matching  , girl  must have rejected  at some point. By the algorithm’s design,  rejects 
 only if she receives a proposal from some boy  whom she strictly prefers to  , or if she already 
 holds a proposal from such a boy. Since the algorithm ensures that a girl’s match quality never 
 decreases (she only switches from boy  to boy  if  , the girl  ’s final match  must 
 satisfy  . This contradicts our assumption that  . 

 Case 2  : Boy  did not propose to girl  during the algorithm. Since the algorithm requires boys 
 to propose in decreasing order of preference (possibly with simultaneous proposals for tied 
 preferences), the fact that  did not propose to  implies either boy  obtained a match with 
 some girl  where  (a tie) before he would have proposed to  , or boy  strictly prefers 

 to  . 

 Subcase 1:  If  , then  must have chosen  over  when both accepted his proposals, 
 or  is the same as  . However, this means  does not strictly prefer  to  , contradicting our 
 assumption that  . 

 Subcase 2:  If  , this directly contradicts our assumption that  . 

 Therefore, no blocking pair can exist, and the matching produced by the modified Gale-Shapley 
 algorithm is stable. 
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 Theorem 3:  When boys have ties in their preference lists but girls have strict preferences, the 
 modified Gale-Shapley algorithm produces a boy-optimal stable matching among all possible 
 stable matchings. 

 Proof: 

 Let  be the matching produced by the modified algorithm and let  be any other stable 
 matching. We need to show that no boy is worse off in  than in  . Now, we define the 
 following sets for each round  of the algorithm. Let  be the set of ordered pairs 
 where boy  has been rejected by girl  by round  . Next, let  be the set of ordered pairs 

 where girl  has accepted (at least temporarily) a proposal from boy  by round  . We 
 claim that for any stable matching  , if  for any  , then  . We prove 
 this by induction on  . We define the base case where at  , with this claim 
 holding vacuously. 

 Inductive step:  Assume the claim holds for  . Consider any rejection that occurs to form 
 . If girl  rejects boy  , it must be because she accepted a boy  whom she strictly 

 prefers  . 

 Now, suppose for contradiction that  . Then in  , girl  is matched to  , while in the 
 algorithm at round  , she prefers  . If  is not matched to a girl he strictly prefers to  in 

 , then  would form a blocking pair for  , contradicting the stability of  . Therefore, 
 in  , boy  must be matched with some girl  where  . 

 By our induction hypothesis,  has not been rejected by any girl he strictly prefers to  by 
 round  . Given the algorithm’s behavior with ties, this means that either  (contradicting 
 our assumption that  ended up proposing to  ), or  (implying that  would have 
 proposed to both simultaneously). 

 In the latter case of a tie, we need to consider how  chose among multiple accepting girls. The 
 precise choice mechanism becomes relevant here but doesn’t affect the overall optimality result, 
 as the preferred choices among tied options are considered equivalent from the boy’s 
 perspective. Therefore, each boy in the modified algorithm obtains a match that is at least as 
 good as his match in any other stable matching, proving the boy-optimality of the resulting 
 matching. 

 Corollary 2  : The presence of ties in boys’ preferences produces a set of boy-optimal matchings 
 rather than a unique boy-optimal matching. The specific outcome depends on how boys choose 
 when multiple equally ranked girls accept their proposals. This rigorous analysis establishes that 
 our modified algorithm preserves the critical stability property of the original Gale-Shapley 
 algorithm, while accommodating the more realistic scenario of preference ties. The extension 
 maintains most structural properties of the classical result while introducing new insights into the 
 potential multiplicity of boy-optimal matchings under indifference. 
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 7.3 Optimality 

 The boy-optimal property of the original algorithm becomes more complex, as multiple stable 
 matchings may exist with equal optimality and the choice made by proposers in tie situations 
 affects the final outcome. 

 The optimality properties of the modified Gale-Shapley algorithm with preference ties require 
 careful analysis. In the classical algorithm without ties, a key result establishes that the 
 algorithm produces a boy-optimal stable matching—one where each boy receives the best 
 partner he could obtain in any stable matching. However, the introduction of ties fundamentally 
 alters this landscape. When preference ties are allowed, there no longer exists a unique 
 boy-optimal stable matching, but rather a set of potentially incomparable boy-optimal matchings. 
 Consider two stable matchings  and  where a boy  has a tie between two girls,  and 

 . In  , he is matched with  , while in  , he is matched with  . Since  is indifferent 
 between these outcomes, both matchings can claim optimality from his perspective. 

 Mathematically, this creates a partial ordering rather than a total ordering of stable matchings. If 
 we denote the set of all stable matchings as  , then we obtain a set of maximal elements 
 under the partial order defined by boy preference, rather than a unique maximum element. This 
 set, which we denote as  , contains all stable matchings that are boy-optimal in at least one 
 possible interpretation of the preference ties. 

 The choice mechanism employed when a boy receives multiple acceptances from tied 
 preferences becomes crucial in determining which specific boy-optimal matching is produced. 
 For instance, if boys employ a consistent tie-breaking rule (such as lexicographic ordering of 
 girls’ names when indifferent), the algorithm will deterministically produce one specific matching 
 from  . Alternative tie-breaking strategies can yield different elements from this set without 
 sacrificing stability or boy-optimality within the framework of ties. This observation has important 
 practical implications: system designers can implement secondary criteria for resolving ties 
 (such as geographical proximity or complementary preferences) while maintaining the 
 fundamental stability and optimality guarantees of the matching algorithm. 

 8. Real-World Applications with Ties 

 In many university admissions processes, applicants are often grouped into broad tiers rather 
 than being assigned strict, rank-ordered preferences. For instance, colleges may categorize 
 candidates into groups such as Tier 1 (Outstanding Candidates), Tier 2 (Strong Candidates), 
 and Tier 3 (Acceptable Candidates). This practice reflects the reality that admissions officers 
 frequently view multiple applicants as equally qualified within a given tier. By incorporating 
 preference ties into the stable matching framework, the extended algorithm provides a more 
 realistic approach to modeling the admissions process, allowing for a more equitable distribution 
 of placements while maintaining stability and efficiency. 

 Similarly, in medical residency programs, hospitals evaluate groups of final-year candidates as 
 equally qualified, particularly when assessing applicants from the same academic institutions or 
 similar training backgrounds. Traditional stable matching mechanisms require strict rankings, 
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 which may not align with real-world selection processes where hospitals consider multiple 
 applicants as interchangeable within certain categories. By enabling preference ties, our 
 modified algorithm offers a more flexible and practical approach to residency matching, reducing 
 the need for arbitrary tie-breaking while ensuring that stability and fairness are preserved in the 
 final placements. 

 9. Conclusion 

 The extension of the Stable Marriage Algorithm to handle ties enhances its applicability to 
 real-world scenarios where strict preference rankings may be impractical or unrealistic. Many 
 real-world matching problems, including college admissions, medical residency placements, and 
 job markets, involve cases where decision-makers consider multiple candidates as equally 
 desirable. By allowing for preference ties and modifying the Gale-Shapley algorithm accordingly, 
 we provide a more flexible and inclusive solution while still preserving termination, stability, and 
 fairness. 

 Although the introduction of ties increases computational complexity, our modified algorithm 
 maintains a polynomial runtime and ensures stable matchings without introducing unnecessary 
 tie-breaking mechanisms. This makes it particularly valuable for large-scale matching systems 
 where fairness and efficiency are equally critical. Furthermore, this extension opens up new 
 avenues for future research, such as exploring the impact of bidirectional ties (allowing both 
 sides to have preference ties), analyzing alternative tie-breaking strategies, and applying the 
 model to more complex multi-agent matching markets. 

 Overall, this study contributes to the ongoing evolution of matching theory by bridging the gap 
 between theoretical algorithms and practical real-world applications. By refining existing models 
 to better reflect actual decision-making processes, we can continue to improve the efficiency 
 and fairness of matching mechanisms across various domains. 

 References: 

 1. Gale, D., & Shapley, L. S. (1962). College Admissions and the Stability of Marriage. The 
 American Mathematical Monthly, 69(1), 9-15.  https://doi.org/10.2307/2312726 

 2. Irving, R. W. (1994). Stable Marriage and Indifference. Discrete Applied Mathematics, 48(3), 
 261-272.  https://doi.org/10.1016/0166-218X(92)00179-P 

 3. Manlove, D. F. (2013). Algorithmics of Matching Under Preferences. World Scientific 
 Publishing. 

 4. Seminario, E. (2018). Stable Marriage Problem. Università di Palermo. Retrieved from 
 https://www.unipa.it/dipartimenti/matematicaeinformatica/.content/documenti/2018_Seminario_E 
 rasmus_Lecture_Stable_Marriage_Problem.pdf 

 11 

https://doi.org/10.2307/2312726
https://doi.org/10.1016/0166-218X(92)00179-P
https://www.unipa.it/dipartimenti/matematicaeinformatica/.content/documenti/2018_Seminario_Erasmus_Lecture_Stable_Marriage_Problem.pdf
https://www.unipa.it/dipartimenti/matematicaeinformatica/.content/documenti/2018_Seminario_Erasmus_Lecture_Stable_Marriage_Problem.pdf

