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Abstract 

Parkinsons, arthritis, and tremors are motor complications many people face as they become 
older. While advanced prosthetics can substantially mitigate these issues, many require both 
complex surgeries and a lot of time to get used to. To facilitate the implementation of 
prosthetics, we present several computational methods for performing neural decoding from a 
population of neurons in the motor cortex of a non-human primate. We first analyzed the 
accuracy of traditional methods, specifically the population vector and maximum likelihood 
estimation (MLE); then we developed and compared different machine-learning models, such as 
feedforward neural networks, random forest classifiers, and support vector machines (SVMs), 
and compared their accuracies to those of the more traditional methods. These findings shall 
help accurately decode the direction of movement in a mammal, which could be used in 
developing brain-computer interfaces and prosthetics.   
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Introduction 

Each year, more adults develop motor problems that impact their lives. Out of the 25% of adults 
that have some disability, 12.2% of them have difficulty with motor tasks including walking and 
climbing stairs [1]. These issues can make their way into other disabilities: for example, mobility 
issues make it difficult for adults to live independently or care for themselves. While many 
prosthetics and brain-computer interfaces (BCIs) are effective in helping adults regain mobility, 
the use of software can greatly assist this process as the time it takes to get accustomed to the 
prosthetic can be greatly shortened. This software uses a process known as neural decoding to 
decipher brain signals to determine a potential auditory, visual, or motor response [2].  

In the brain, the motor cortex is responsible for direct movement. Each neuron in this region is 
specifically tuned to handle a specific task; for example, some neurons are tuned for direct 
licking in different directions, while others are designed for planning this direct licking in those 
directions.  

Several decoding algorithms have been explored for the purpose of neural decoding, such as 
the population vector and maximum likelihood estimation methods. The MLE algorithm chooses 
a point estimate that can best describe a population distribution of values [5]. Using knowledge 
of how a random sample is distributed, both a population mean and standard deviation can be 
determined to best fit the random sample of data. In neural decoding, this involves identifying 
the most probable direction of movement based on activity patterns from a given sample of 
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neurons, providing a probabilistic framework that works effectively when the distribution of 
neural responses is well understood. 

The population vector algorithm relies on the concept that each neuron can be considered a 
vector pointing in its preferred direction, with the magnitude of the vector proportional to the 
neuron’s firing rate. The algorithm computes a resultant vector that represents the intended 
movement direction by summing these individual vectors across a population of neurons along 
with their respective weights (how much of an impact they may have on the direction) [12].  

This study aims to compare the accuracies of different algorithms to determine which ones can 
decode movement direction just as well--if not better--than both the MLE and population vector 
algorithms.  

Methods 

We utilized a dataset containing data from the motor cortex of a monkey controlling a joystick in 
1 of 8 directions. As the monkey sees a direction in the form of an arrow on the screen, it moves 
a joystick in that same direction. Using a manipulandum, the number of action potentials (or 
“spikes”) and the firing rate from a sample of 143 neurons was collected. For later use, each 
firing rate of each neuron during each trial is stored in a 158-row by 144-column Pandas 
DataFrame, where each row represents a trial, the first 143 columns represent each neuron with 
the final column containing the direction the monkey moved in during that trial.  

 

Figure 1: Visual diagram of how data was collected during the experiment. 

Both the maximum likelihood estimation (MLE) and population vector algorithms are used as 
baselines we compare other models to, with both methods achieving accuracies of 99% and 
100% respectively. We trained a support vector machine classifier (SVC), random forest 
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classifier, and a neural network with a dataset containing firing rates and spike counts of 143 
neurons during a recording period for 158 trials. 

Support vector machines work by finding an optimal line that separates data points of different 
classes in a high-dimensional space [6]. This line maximizes the margin, or the distance, 
between two data points of opposite classes, where each distance between the line and a 
nearby data point can be represented as a vector, and each class represents a unique direction. 
However, SVMs are designed to find the boundary between two classes [8]. Therefore, for all 8 
possible directions, 8 optimal lines are determined, where each line classifies whether a set of 
firing rates from each of the 143 neurons will result in a monkey moving in a specific direction or 
not.  

Random forest classifiers build multiple decision trees during training, each trained on a random 
subset of the training data and a subset of features. In the context of neural decoding, multiple 
decision trees can consider different features or characteristics that split the neuron data into 
clusters, making it easier to classify the direction of the monkey’s movement. When making 
predictions, each tree votes for a predicted direction, and the majority vote determines the final 
prediction for the direction. This approach reduces overfitting, which is common in single 
decision trees, and enhances generalization to new data. [7].  

Neural networks are inspired by the structure and function of the human brain and consist of 
layers of interconnected nodes, or "neurons." Each neuron receives inputs, applies weights and 
biases, processes the information through an activation function, and passes the result to the 
next layer [10]. The input layer takes in each neuron’s firing rate and spike count, while the 
hidden layers apply specific weights and biases to each value. After the data passes through 
these hidden layers, the result is fit through an activation function, which is a modified softmax 
function that outputs a value between 1 and 8, where each number represents a specific 
direction. Then, each result is sent to the output layer, which consists of 1 neuron outputting an 
integer value between 1 and 8 (where each integer represents a separate direction). Eventually, 
each value is then rounded down using the numpy.floor() method as the directions are only 
represented as integers and not continuous floating points. Before training our neural network, 
the data was preprocessed using Principal Component Analysis (PCA) into two principal 
components to highlight features that can maximize the variance of our data, which could make 
decoding the movement easier [9]. Given the data we collected, the two principal components 
were known to be firing rate and spike count. Each component was created using the 
scikit_learn.pca() function.  

We generated code for each model using Python in Google Colab. Our dataset was split into 
80% training and 20% testing data to ensure our models would receive enough data and to 
prevent them from overfitting. The scikit-learn Python package was used to create the support 
vector machine and random forest classifier, as well as the TensorFlow package to create the 
neural network. We also used the Numpy package to create the modified softmax activation 
function. For each model, an 8x8 confusion matrix was generated using scikit-learn.metrics, 
which contains the frequencies of the actual direction the monkey was moving in compared to 
each model's predicted direction.  

Results 
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Overall, our first neural network yielded an accuracy of 9% after training the model with the 
transformed data, with a 13% final accuracy after rounding our results down (as the direction 
must be represented as an integer). However, this resulted in a worse accuracy of 9% after 
flooring each predicted direction using tensorflow.floor(). The Random Forest, which was 
composed of 75 decision trees, and Support Vector Machine models, however, yielded 
accuracies of 78.125% and 53.125% respectively.  

 

Figure 2: Confusion matrix comparing actual and predicted directions from random forest model. 

 

Figure 3: Confusion Matrix comparing actual and predicted directions from SVM. 
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Discussion 

After transforming our data (which contains both the firing rate and spike count of each neuron) 
using PCA, we obtained covariance values for each principal component which explain the 
strength to which a principal component contributes to the decision. The ratio of covariance 
values of both principal components was 1:0, signifying the first principal component is the 
primary contributor to the direction. In other words, a neuron’s firing rate contributes to the 
predicted direction, while the number of spikes it produces has no effect on the predicted 
direction. This result corroborates existing literature as neuron spike count is not considered 
when decoding neural patterns. After confirming that spike count has no effect on a brain signal, 
we reformatted our data to contain the firing rate values for all 143 neurons during all 158 trials. 

When implementing the neural network, a primary issue encountered was creating the new 
activation function, which is a modified softmax function that outputs a value between 1 and 8, 
with each number representing a unique direction. Because each direction must be an integer, 
continuous floating points skew the accuracy to be lower as they do not match with actual 
directions. Because of this, we modified the softmax function into a step function, where each 
result is either rounded or floored using the tensorflow.floor() and tensorflow.round() methods. 
However, neural networks implement the use of gradient descent to minimize a cost, or loss, 
function, where a larger value represents a greater model inaccuracy [11]. Because our modified 
activation function only returns integer values, there are discontinuities at each actual direction 
value, meaning the gradient of the activation function at each point does not exist.  

 

Figure 4: Softmax function used in the creation of the neural network 
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Figure 5: Custom step function for initial neural network design. 

Additionally, the random forest and support vector machines are designed to directly classify a 
specific output while neural networks reach their final result after separate weights and biases 
are applied to each firing rate. As a result, the result becomes a continuous, floating point rather 
than an integer specifying the direction, leaving room for further error in the results.  

One change that can be tested is to modify the structure of the neural network by modifying the 
output layer. Rather than having our result be outputted to one neuron and modified afterward, 
we could instead have the output layer consisting of 8 neurons, with each neuron outputting the 
probability that the firing rate could indicate a specific direction of movement. From there, the 
neuron with the highest probability can be indicated as our predicted direction. This method 
would also not require the use of a modified activation function. 

Conclusion 

We developed and tested three different machine learning models against the population vector 
and maximum likelihood estimation algorithms, two traditional methods used in neural decoding. 
While some machine learning models such as random forest and support vector machines do 
yield above-average accuracies when decoding brain patterns, more traditional methods like the 
population vector and maximum likelihood estimation algorithms prove to be superior to these 
other models. However, like with other models, these ones can potentially yield greater 
accuracies with further tuning. After further tuning, these models can be implemented into 
brain-computer interfaces and prosthetics, both of which can be controlled by people given their 
brain signals.  
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