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Abstract 

 
This research explores enhancing fine-grained image classification using transfer 

learning and attention mechanisms. The study applies a ResNet50 architecture 

pretrained on ImageNet and augmented with Convolutional Block Attention Modules 

(CBAM) to the Stanford Dogs dataset. Results show significant improvements in 

classification accuracy, with the model achieving 86.92% accuracy on the test set. This 

performance gain demonstrates the effectiveness of combining transfer learning and 

attention mechanisms in overcoming challenges in fine-grained image classification, 

paving the way for more accurate systems in domains requiring detailed visual analysis. 

Keywords: computer vision, deep learning, transfer learning, attention mechanisms, 

fine-grained classification 
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1. Introduction 

 
Fine-grained image classification, which involves distinguishing between 

subcategories of visually similar objects, presents significant challenges in computer 

vision. This task is especially valuable in fields like biodiversity monitoring, medical 

diagnosis, and autonomous driving, where precise classification of visually similar 

objects is critical. The difficulty lies in the subtle intra-class variations (differences within 

the same category) and inter-class similarities (resemblances across different 

categories), which complicate accurate feature extraction and classification. 

Two key challenges impede progress in fine-grained classification: First, the scarcity of 

labeled data and the limitations of conventional feature extraction techniques. Limited 

labeled examples impede the training of robust machine learning models, potentially 

resulting in poor generalization to unseen data. Additionally, traditional feature 

extraction methods may struggle to capture the nuanced details crucial for 

differentiating between closely related subcategories. 

This research explores the potential of combining transfer learning and attention 

mechanisms to address these challenges. Transfer learning is applied to adapt models 

pre-trained on large-scale datasets to fine-grained tasks, mitigating the challenge of 

limited labeled data. Attention mechanisms are integrated to enhance the model's ability 

to focus on discriminative image regions, aiming to improve feature extraction for subtle 

distinctions. 

The study applies these techniques to the Stanford Dogs dataset, utilizing a ResNet50 

architecture pretrained on ImageNet and augmented with Convolutional Block Attention 

Modules (CBAM), a mechanism that enhances the model's focus on important regions 

of an image. Results show improvements in classification accuracy, with the model 

achieving 86.92% accuracy on the test set, an increase from the baseline. This 

performance suggests that the combination of transfer learning and attention 

mechanisms offers benefits in fine-grained image classification tasks. 

The remainder of this paper is organized as follows: the Background Literature section 

provides an overview of existing approaches, transfer learning applications, and 

attention mechanisms; the Methods section details the model architecture, 

implementation, and evaluation metrics; the Experiments and Results section presents 

findings and statistical analyses; and finally, the Discussion and Conclusion section 

reflects on the study’s implications, limitations, and potential future work. 



 

3 
 

2. Background Literature 
 

 
Existing Approaches: Overview of Current Methods in Fine-Grained Image 

Classification 

 

 
Fine-grained image classification (FGIC) tasks present significant challenges due to 

small inter-class variance and high intra-class variance. Convolutional Neural Networks 

(CNNs) such as ResNet and VGG have demonstrated strong performance on 

large-scale datasets like ImageNet (He et al., 2016; Simonyan & Zisserman, 2014). 

However, their ability to capture discriminative features for FGIC is limited. Recent work 

has introduced attention mechanisms and part-based methods to refine feature 

extraction and enhance classification performance by focusing on key object parts 

(Zheng et al., 2017). 

 
Transfer Learning: Benefits and Applications in Image Classification 

 
Transfer learning has proven highly effective in FGIC, particularly when data is scarce. 

Pre-trained models on large datasets like ImageNet are fine-tuned for specific 

fine-grained tasks, significantly reducing the amount of labeled data required and 

speeding up convergence. For example, Vision Transformer (ViT) models leverage 

transfer learning to improve performance in FGIC tasks by focusing on global and local 

features (Dosovitskiy et al., 2020). This approach, as demonstrated in "An Image is 

Worth 16x16 Words: Transformers for Image Recognition at Scale," shows that a pure 

transformer applied directly to image patches can perform exceptionally well on image 

classification tasks (Dosovitskiy et al., 2020). 

 
Attention Mechanisms: Role and Implementation in Enhancing Deep Learning 

Models 

Attention mechanisms have revolutionized FGIC by focusing on the most relevant parts 

of an image. The groundbreaking paper "Attention Is All You Need" introduced the 

transformer architecture, which has become fundamental in various machine learning 

tasks, including computer vision (Vaswani et al., 2017). Hybrid attention modules, 

combining spatial and channel attention, significantly improve classification performance 

by enhancing feature representation. A prominent example is the Convolutional Block 

Attention Module (CBAM) that applies attention sequentially across spatial and channel 

dimensions (Woo et al., 2018).
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3. Methods 
 

 
3.1 Model Selection and Baseline 

 
The ResNetWithCBAM model combines a ResNet50 architecture with 

Convolutional Block Attention Modules (CBAM). The model begins with a ResNet50 

backbone, comprising an initial convolutional layer followed by batch normalization and 

ReLU activation. The backbone consists of four main stages, each containing multiple 

ResNet bottleneck layers with shortcut connections. CBAM modules are integrated after 

the first and second stages to enhance feature refinement. Each CBAM module 

includes channel and spatial attention mechanisms. The channel attention utilizes 

adaptive average and max pooling followed by a shared multi-layer perceptron to 

generate channel-wise attention maps. The spatial attention applies a 7x7 convolution to 

create spatial attention maps. Following the ResNet stages and CBAM modules, the 

model employs global average pooling and a final fully connected layer with 120 output 

units, corresponding to the number of dog breed classes in the Stanford Dogs dataset. 

This architecture combines the robust feature extraction capabilities of ResNet50 with 

the focused attention mechanisms of CBAM, aiming to improve fine-grained 

classification performance on dog breed identification tasks. 

 

ResNet with sliced classification layer 

 
 

ResNet with replaced classification layer 
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Reason for Model Selection: ResNet-50 was chosen due to its deep architecture and 

the use of residual connections that mitigate the vanishing gradient problem, allowing 

the model to be trained effectively even with deeper layers. The pre-trained model on 

ImageNet provides a strong starting point for transfer learning by using its learned 

features, which can be adapted to the dog breed classification task. 

3.2 Transfer Learning 
 

The process of transfer learning involves fine-tuning a pre-trained model to adapt 

it to a new, but related task. In our case, we have taken the pre-trained ResNet-50 

model and transferred it to the Stanford Dogs Dataset. The process began by 

replacing the original final classification layer of ResNet-50, which was designed for 

ImageNet's 1,000 classes, with a new fully connected layer tailored to predict one of the 

120 dog breed classes in the Stanford Dogs Dataset. This coarse to fine-grained 

transfer is the essence of this paper. 

3.3 Model Fine-Tuning: 
 

I froze the layers of ResNet-50's convolutional base to retain the learned features 

and only trained the new classification head. This allowed the model to learn specific 

features relevant to the fine-grained classification of dog breeds, without forgetting the 

useful features learned from ImageNet. 

ResNet with all layers frozen except classification 

 
3.4 Attention Mechanisms 

 
To enhance the performance of the ResNet-50 model on fine-grained 

classification, we integrated Spatial and Channel Attention mechanisms using the 

Convolutional Block Attention Module (CBAM) approach (Woo et al., 2018). These 

attention modules allow the model to focus on the most relevant regions of the image 

(spatial) and important features within those regions (channel). 
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Spatial Attention 

 
Spatial attention is used to focus on significant regions within the image that 

contain discriminative features for the classification task. This mechanism generates a 

spatial attention map that guides the model to emphasize key parts of the image, such 

as the dog's face or distinguishing features. The spatial attention module applies to a 

7x7 convolution operation followed by a sigmoid activation to generate the attention 

map. This map is then multiplied element-wise with the input feature maps to refine the 

learned representation by suppressing irrelevant spatial regions. 

Channel Attention 
 

Channel attention allows the model to focus on specific channels that are most 

relevant to the task. Since certain feature channels may carry more discriminative 

information for dog breed classification, this mechanism enables the model to amplify 

important channels and suppress less useful ones. The channel attention module 

computes a channel-wise attention map by using both max-pooling and average-pooling 

operations, followed by a shared multi-layer perceptron with a reduction ratio of 16. The 

resulting attention map is then applied to the feature maps to weight the importance of 

each channel. 

Implementation in ResNet-50 
 

I integrated spatial and channel attention in the CBAM modules after the first and 

second residual blocks of our ResNet-50 architecture. This placement allows the model 

to refine its feature representations early in the network, enhancing its ability to capture 

fine-grained details. The CBAM modules are applied sequentially, with channel attention 

preceding spatial attention, as this order has been shown to be more effective (Woo et 

al., 2018). 

By introducing both spatial and channel attention mechanisms, we aim to allow the 

model to focus selectively on the most discriminative parts of the image and the most 

relevant features, thereby improving the fine-grained classification performance. This 

approach complements our transfer learning strategy by enhancing the model's ability to 

adapt pre-learned features to the specific nuances of dog breed classification. 
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3.5 Model Implementation Details 

 
1. Data Preprocessing: The images were resized to 224x224 pixels as required by 

ResNet-50. Data augmentation techniques such as horizontal flipping, random 

cropping, and rotation were applied to increase the diversity of the training set 

and reduce overfitting on the Stanford Dog dataset. 

2. Training Setup: 

○ Optimizer: Adam optimizer with a learning rate of 1e-4. 

○ Loss Function: Cross-entropy loss, suitable for multi-class classification. 

○ Batch Size: 32. 

○ Epochs: 10 epochs, with early stopping based on validation loss. 
 

3.6 Evaluation Metrics 
 

This will be evaluated by utilizing metrics such as: 
 

● Accuracy: The percentage of correctly predicted labels. 

● Precision, Recall, and F1-Score: These metrics were computed using a 

macro-averaging approach to account for class imbalance. Each metric was 

calculated for all 120 dog breeds individually and then averaged to provide a 

global performance measure. 

● Confusion Matrix: A confusion matrix was used to visualize the performance 

across all dog breeds and identify areas where the model struggled. 
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4. Experiments and Results 

 
4.1 Experimental Setup 

 
The hyperparameter configurations that have been used during training are as follows: 

 
1. Datasets: 

○ Training, Validation, and Test Splits: The Stanford Dogs Dataset 

consists of 120 different dog breeds, with a total of 20,580 images. The 

dataset was split into 70% training, 15% validation, and 15% test for 

evaluating the performance of our model. 

○ Preprocessing: All images were resized to 224x224 pixels to match the 

input size expected by the ResNet-50 model. We also applied data 

augmentation techniques such as random horizontal flipping and cropping 

to help reduce overfitting. 

2. Hyperparameters: 

○ Optimizer:We used the Adam optimizer with a learning rate of 1e-4, 

chosen based on initial experiments to ensure a good balance between 

training speed and convergence. 

○ Batch Size: A batch size of 32 was used during training. 

○ Epochs: The model was trained for 10 epochs with early stopping based 

on validation loss. 

3. Hardware: 

○ The experiments were conducted on a CoLab notebook with a limited T4 

GPU to accelerate training. 

 
4.2 Baseline Evaluation 

 
To  evaluate  the effectiveness of the attention mechanisms, we first tested the 

ResNet-50 model without any attention modules. This served as our baseline. 

 
1. Architecture: The baseline model consisted of the original ResNet-50 

architecture pre-trained on ImageNet. We replaced the classification head of 

ResNet-50 with a fully connected layer suited for the Stanford Dogs dataset, 

which has 120 classes corresponding to the 120 dog breeds. 

2. Performance Metrics: The baseline performance metrics for the ResNet-50 

model without attention mechanisms demonstrate a progressive improvement 

over 10 epochs of training. The model achieved a final accuracy of 76.37%, with 

corresponding precision, recall, and F1-score values of 0.80, 0.76, and 0.76, 

respectively. Notably, the metrics show significant gains from the initial epoch, 

indicating effective learning and adaptation to the fine-grained classification task 

of dog breeds despite the challenges posed by high intra-class variance and low 
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inter-class variance. The first figure represents performance of the ResNet-50 

baseline model without integrated attention mechanisms in epoch 1 of training 

and the second figure represents epoch 10 of training. 

 

Confusion matrix in epoch 1 of transfer training Confusion matrix in epoch 10 of transfer training 
 
 
 

 

4.3 Enhanced Model Evaluation 
 

In the enhanced model, spatial and channel attention mechanisms were added to 

the ResNet-50 architecture to improve performance. These mechanisms allow the 

model to focus on the most relevant image regions and feature channels, which are 

particularly useful for fine-grained image classification tasks like dog breed 

identification. 

1. Architecture: The enhanced model consists of the ResNet-50 architecture with 

additional spatial attention and channel attention layers, placed after certain 

convolutional layers in the network. These attention mechanisms guide the 

model to focus on the most discriminative features for its classification. 

2. Performance Metrics: The enhanced model with attention mechanisms 

demonstrated significant improvements in performance metrics over the training 

epochs. Starting with an accuracy of 71.93% in the first epoch, the model rapidly 

improved to reach a peak accuracy of 88.03% by the sixth epoch. The precision, 

recall, and F1-score also showed consistent improvement, starting from 0.78, 

0.72, and 0.70 respectively in the first epoch, and stabilizing around 0.88, 0.87, 

and 0.87 by the final epoch. The training loss decreased steadily from 3.8996 to 

0.0559, indicating effective learning, while the validation loss stabilized around 

0.45, s u g g e s t i n g   good generalization without overfitting. The first 

figure 
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represents performance of the ResNet-50 baseline model with integrated 

attention mechanisms in epoch 1 of training and the second figure represents 

epoch 10 of training. 
 
 

 
 

 

Confusion matrix in epoch 1 of attention-based training Confusion matrix in epoch 10 of attention-based 

training 

4.4 Comparison of Results 
 

This section will present a side-by-side comparison of the baseline model (ResNet-50 

without attention mechanisms) and the enhanced model (ResNet-50 with spatial and 

channel attention mechanisms). The goal is to demonstrate how the attention 

mechanisms help the model focus on relevant features and improve its performance in 

fine-grained classification tasks. 
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Results 

 
The baseline ResNet-50 model achieved an accuracy of 76.37%, with a precision of 

0.80, recall of 0.76, and an F1-score of 0.76. In contrast, the enhanced model, 

incorporating attention mechanisms, demonstrated substantial improvements, achieving 

an accuracy of 86.92%, precision of 0.88, recall of 0.87, and an F1-score of 0.87. The 

enhanced model's accuracy peaked at the sixth epoch before stabilizing, indicating 

improved performance and consistency. 

To evaluate the statistical significance of these improvements, a paired t-test was 

conducted. Standard deviations were calculated across three runs to assess variability. 

The baseline model exhibited higher variability in accuracy (SD = 0.0974), recall (SD = 

0.0948), and F1-score (SD = 0.1004), compared to the enhanced model's 

corresponding metrics (accuracy SD = 0.0456, recall SD = 0.0438, F1-score SD = 

0.0498). Precision showed relatively low variability for both models, with SDs of 0.0173 

(baseline) and 0.0283 (enhanced). 
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4.5 Statistical Analysis 

 
To provide statistical significance to our results, we performed tests to determine if the 

improvements observed in the enhanced model are statistically significant compared to 

the baseline. 

 
Standard Deviation (calculated from 3 runs) 

 
I calculated the standard deviation of the results to understand the variability across 

different runs. The standard deviations for each metric are as follows: 

 

Model Type Accuracy (SD) Precision (SD) Recall (SD) F1-Score (SD) 

Baseline 0.0974 0.0173 0.0948 0.1004 

Enhanced 0.0456 0.0283 0.0438 0.0498 

Table 1 summarizes the standard deviations of performance metrics across three runs. 

The enhanced model exhibits lower variability in accuracy, recall, and F1-score 

compared to the baseline, demonstrating improved consistency. 
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T-test 

 
To determine if the improvements in the enhanced model are statistically significant, we 

performed a paired t-test comparing the baseline model's performance to the enhanced 

model's performance. 

The null hypothesis is that there is no significant difference between the baseline and 

enhanced models. We use a significance level of α = 0.05. 

Results of the t-test: 
 

t-statistic: 4.8726 
 

p-value: 0.0009 

 
Since the p-value (0.0009) is less than our significance level (0.05), we reject the null 

hypothesis. This suggests that the improvements observed in the enhanced model are 

statistically significant compared to the baseline model. 

These statistical analyses provide strong evidence that the addition of attention 

mechanisms and transfer learning techniques resulted in significant improvements in 

the model's performance for fine-grained image classification on the Stanford Dogs 

dataset. 
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5.1 Analysis of Results 

 
The comparison between the baseline ResNet-50 model and the enhanced model with 

CBAM reveals significant improvements in fine-grained classification performance on 

the Stanford Dogs dataset. 

1. Accuracy: The enhanced model achieved a final accuracy of 86.92%, compared 

to 76.37% for the baseline model. This 10.55 percentage point increase 

demonstrates the substantial impact of incorporating attention mechanisms. 

2. Precision and Recall: The enhanced model showed improvements in both 

precision (0.88 vs 0.80) and recall (0.87 vs 0.76). This indicates that the attention 

mechanisms helped reduce both false positives and false negatives, leading to 

more reliable breed identification. 

3. F1-Score: The F1-score, which balances precision and recall, improved from 

0.76 to 0.87, further confirming the overall enhancement in classification 

performance. 

4. Training Efficiency: The enhanced model converged faster, reaching higher 

performance levels in fewer epochs. By epoch 3, it already surpassed the final 

performance of the baseline model, suggesting that attention mechanisms also 

contribute to more efficient learning. 
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5. Confusion Matrix Analysis: The confusion matrices show a clearer diagonal 

pattern in later epochs for the enhanced model, indicating improved 

discrimination between similar breeds. This supports the hypothesis that 

attention mechanisms help the model focus on subtle distinguishing features. 

Effectiveness of Attention Mechanisms: 
 

Spatial Attention: The improved accuracy on visually similar breeds suggests that 

spatial attention successfully guided the model to focus on discriminative regions such 

as facial features, body shape, and coat patterns. 

Channel Attention: The enhanced performance across various breeds indicates that 

channel attention effectively prioritized important feature channels, allowing the model 

to capture fine-grained details that distinguish closely related dog breeds. 

The combination of spatial and channel attention in CBAM appears to create a 

synergistic effect, enabling the model to both focus on relevant image areas and 

emphasize important feature channels simultaneously. This dual-attention approach 

proves particularly effective for the challenging task of fine-grained dog breed 

classification. 

These results strongly support the hypothesis that incorporating attention mechanisms 

significantly enhances the performance of fine-grained image classification tasks, 

particularly when dealing with subtle inter-class differences as found in dog breed 

identification. 

5.2 Challenges and Limitations 
 

While attention mechanisms offer significant improvements in model performance, there 

are several challenges and limitations associated with the current approach: 

1. Overfitting: 

Fine-grained datasets like the Stanford Dogs dataset are highly challenging due 

to the subtle differences between classes. Even with the enhanced model, there 

is a risk of overfitting, particularly if the model becomes too specialized to the 

training data and performs poorly on unseen examples. Regularization 

techniques such as dropout and weight decay could mitigate this issue, but 

they also need to be tuned carefully. 

2. Computational Complexity: 

Adding attention mechanisms to the ResNet-50 architecture increases the 

computational cost. This is especially noticeable during both training and 

inference. Attention modules introduce additional parameters and computational 
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overhead, which might make the model slower for real-time applications, 

particularly when deploying it in resource-constrained environments. 

3. Class Imbalance: 

In the Stanford Dogs dataset, some dog breeds have more samples than others, 

leading to class imbalance. This imbalance can cause the model to be biased 

toward more frequently occurring breeds, which might reduce its performance on 

rarer breeds. Techniques such as class weighting or oversampling might be 

required to address this issue. 

4. Difficulty in Fine-Tuning: 

Fine-tuning a pre-trained model on a new dataset is often a delicate process. The 

transfer learning approach can lead to suboptimal results if the new dataset is too 

different from the original training data. Although the Stanford Dogs dataset 

shares some similarities with the ImageNet dataset (as it also contains natural 

images), the fine-grained nature of the task introduces a layer of complexity that 

may require more careful hyperparameter tuning. 

5.3 Potential Future Work in the Future 
 

There are several potential avenues for future research that could further improve my 

model’s performance and address the limitations of my current approach: 

1. Incorporating Other Attention Mechanisms: 

In addition to spatial and channel attention, there are other attention mechanisms 

like self-attention or transformers that could be incorporated into the model. 

These mechanisms have shown great success in other domains (such as NLP 

and vision transformers) and could potentially provide better performance in 

fine-grained image classification tasks. 

2. Model Optimization and Pruning: 

To reduce the computational complexity of the model, we could explore model 

pruning techniques to remove redundant parameters and optimize the network’s 

performance. This would help in reducing both training time and the memory 

footprint of the model, making it more efficient for deployment. 

3. Data Augmentation and Synthetic Data: 

Further augmenting the dataset with synthetic images could help the model 

generalize better to unseen examples. Techniques like style transfer, 

image-to-image translation, or generative adversarial networks (GANs) could be 

explored to generate more training data and diversify the images for better model 

robustness. 

4. Hybrid Models: 

Combining ResNet-50 with other advanced models like DenseNet or Inception 

could improve feature extraction. Additionally, combining CNNs with Recurrent 
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Neural Networks (RNNs) or transformers could enable the model to capture 

spatial dependencies over larger image regions. 

5. Few-shot Learning: 

Given the complexity of distinguishing between fine-grained classes, few-shot 

learning techniques could be explored to train the model with fewer labeled 

examples. This would be particularly useful in scenarios where annotated data is 

scarce or difficult to obtain. 

6. Real-Time Deployment: 

Finally, efforts should be made to deploy the model efficiently in real-world 

applications. Optimizing the model for real-time inference without sacrificing too 

much accuracy, such as through quantization or distillation, would make it more 

practical for mobile or embedded devices. 
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Conclusion 

 
This study demonstrates the effectiveness of combining transfer learning and 

attention mechanisms for fine-grained image classification tasks. By leveraging a 

ResNet50 model pre-trained on ImageNet and incorporating Convolutional Block 

Attention Modules (CBAM), we achieved significant improvements in classifying dog 

breeds from the Stanford Dogs dataset. 

Our enhanced model, which integrates spatial and channel attention, achieved an 

accuracy of 86.92% on the test set, a substantial increase from the baseline ResNet50 

model's 76.37% accuracy. This improvement was consistent across other metrics, with 

precision increasing from 0.80 to 0.88, recalling from 0.76 to 0.87, and F1-score from 

0.76 to 0.87. 

 
The success of this approach can be attributed to two key factors: 

 
1. Transfer learning allowed us to leverage features learned from a large-scale 

dataset (ImageNet) and adapt them to our specific fine-grained classification 

task. 

2. The attention mechanisms enabled the model to focus on the most relevant 

image regions and feature channels, crucial for distinguishing between visually 

similar dog breeds. 

 
Statistical analysis confirmed that these improvements were significant, with a p-value 

of 0.0009 in our paired t-test, well below the 0.05 significance threshold. 

 
These results emphasize the potential of combining transfer learning with attention 

mechanisms in addressing the challenges of fine-grained image classification, 

particularly in scenarios with limited labeled data. Future work could explore the 

application of this approach to other fine-grained classification tasks and investigate 

ways to further optimize the attention mechanisms for specific domains. 

 
In conclusion, our research contributes to the growing body of evidence supporting the 

efficacy of attention-enhanced transfer learning in computer vision tasks, paving the 

way for more accurate and efficient fine-grained image classification systems. 
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