
SeizNow: A Highly Accurate Model for Automated Pediatric Seizure Diagnosis using 
Neural Networks  
Nadia Lach-Hab 

 
Abstract 
 

The purpose of this experiment is to examine the mathematical relationships that exist 
within electroencephalogram (EEG) data and to determine if those relationships can help 
diagnose pediatric seizures. There is currently no cost-efficient automated way to detect 
seizures solely based on EEG data. This research aims to find a reliable way to detect seizures 
by determining the relationship between the discrete energy differences of pediatric seizure 
EEG data and pediatric non-seizure EEG data. A neural network was coded to analyze the 
discrete energy differences and classify EEG data into seizure and non-seizure groups with an 
87% accuracy. The discrete energy differences between the two groups were statistically 
different, so the null hypothesis was rejected. Non-seizure data had higher discrete energy 
values, indicating that the EEG graphs for the seizure group's discrete energy differences were 
smoother overall and had less distinct changes between the relative minimums and maximums. 
This project highlights the importance of examining mathematical properties, such as discrete 
energy, to indicate seizure activity. This project was the first to successfully apply discrete 
energy to medical research. This neural network could be expanded to help automate seizure 
diagnosis in pediatric patients in real-time, assisting healthcare professionals. Notably, since the 
project was developed at no cost, it can also be applied to low-income communities, ensuring 
broader access to essential healthcare technology. 

 
Introduction 
 

An electroencephalogram (EEG) is a test that measures electrical activity in the brain 
(Mayo Clinic, 2024). A seizure is a sudden burst of electrical activity in the brain that can cause 
spasms or changes in awareness (Epilepsy Foundation, n.d.). The EEG detects the electrical 
activity of the brain through uniformly arranged electrodes on the scalp. An EEG channel is 
defined by the difference between potentials measured at two electrodes, which captures the 
summed potential of millions of neurons. Shortly after the onset of most seizures, but sometimes 
after a prolonged period following seizure onset, a group of EEG channels develops rhythmic 
activity, often containing multiple frequency components. The identity of the EEG channels 
involved and the structure of the rhythmic activity is different across individuals, making it difficult 
to diagnose seizures (Tran et al., 2022) . Diagnosing pediatric seizures solely based on EEGs 
can be challenging due to several factors. Some seizures may not produce distinct EEG 
patterns, making it difficult to confirm a diagnosis (Panayiotopoulos CP., 2005).  

 
Furthermore, various non-seizure conditions can mimic seizure symptoms, complicating 

the interpretation of EEG results (Nationwide Children's, n.d.). Pediatric patients may also have 
trouble remaining still during the procedure, affecting the quality of the EEG recording (Stanford 
Medicine Children's Health, 2024). Seizure characteristics can differ significantly between 
patients. This makes it necessary to conduct individualized analyses beyond the EEG when 
diagnosing seizures (Saab et al., 2020). Seizure characteristics can also vary based on the 
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patients, which is why individualized analysis is required when examining seizures and 
diagnosing epilepsy. These challenges exemplify the need for advanced automated detection 
systems to improve accuracy and efficiency in diagnosing pediatric seizures. 

 
A time series is a sequence of data points indexed in time order, often used for analyzing 

trends or patterns over time. These time series have properties, such as fractional Brownian 
motion. Fractional Brownian motion (fBm) is a random walk process characterized by its Hurst 
parameter, H, which determines the correlation of increments (Quilez, n.d.). The quantity of the 
Hurst parameter helps quantify the persistence in EEG signals, providing insights into neural 
dynamics and possible abnormalities (Janušonis et al., 2020). Literature has indicated that EEG 
signals often exhibit fractal-like behavior, which can be conveyed using fBm due to its ability to 
model self-similarity, visualize and model patterns, and its statistical properties (Worcester 
Polytechnic Institute, n.d,). This experiment wanted to exploit the fractional Brownian motion 
traits of the EEG data to determine if they could be indicators of a seizure.  

 
The Hausdorff Dimension is the measure of roughness or the fractal dimension. For 

example, a point has a Hausdorff Dimension of 0, a square has a Hausdorff Dimension of 2. In 
fBm, the Hausdorff dimension is calculated by subtracting the Hurst exponent from 2 (Schaefer 
et al., 2013). Fractals, such as EEG data, have a non-integer Hausdorff Dimension. Fractional 
Brownian motion also has discrete energy values that can be calculated as shown below. When 
graphed over time, these discrete energy curves should converge to the value of the Hausdorff 
Dimension, if the data behaves like fBm (Betti et al., 2022).  

 
Assessing these properties can provide useful insight about the EEG data, it serves as a 

useful comparison between seizure and non-seizure data. It is still unknown if EEG data 
behaves like fBm, however, the discrete energy calculation is not dependent on fBm, making it 
suitable for research. One way to assess if EEG data behaves like fBm is calculating what 
number the discrete energy curve converges to and subtracting the Hurst exponent from 2 (Betti 
et al., 2022). If the EEG data does behave like fBm, assessing fBm’s traits and applying it to 
EEG data could be very beneficial. For example, fBm’s self similarity trait could help predict 
seizures and their behavior on the EEG.  

 
Procedure/Methodology 
 

The EEG data used in this experiment was taken from the CHB-MIT Scalp EEG 
Database. There were 22 subjects from which EEG data was collected from at the Children’s 
Hospital Boston. All signals were sampled at 256 samples per second with 16-bit resolution, and 
the international 10-20 system of electrode positioning and nomenclature was used to record 
the data (Shoeb, 2010). Each file had been labeled when the seizure occurred which made it 
seamless to process the data through the computer algorithm. All code was done in Jupyter 
Notebook in Python. 

 
The EEG .edf files had to be read in as numpy arrays to make the data easier to work 

with mathematically. The EEGs were split into times when the patient was seizing and 
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experienced regular neurological activity and these arrays were stored and labeled accordingly. 
The arrays were then normalized using the min-max normalization, so every data point was 
divided by the maximum value in the EEG array. Min-max normalization was chosen so that it 
scales data to a consistent range, thereby improving model performance and convergence in 
machine learning algorithms. This process was repeated for every subject, the array consisted 
of 1 second of EEG data values seizing and when they were experiencing normal neurological 
activity was processed for 1 second. The discrete energy quantities were then calculated for the 
arrays and the S parameter was 25. Code for calculating the discrete energy values is below 
given a numpy array, P, and the S parameter. 

 

 
Figure 1: Discrete Energy Calculation Code 
 

The top and bottom 10% of the data values, or the outliers, were removed from the 
arrays of discrete energy dataset to maximize accuracy. The minimum and maximum discrete 
energy values of the seizure and non-seizure data arrays were stored in a separate list and 
analyzed. The average off each of these lists was taken. T-tests were run on both the minimum 
dataset of the seizure and non-seizure data and the maximum of the seizure and non-seizure 
data to determine the statistical significance of the data. Below is the code for the discrete 
energy minimum/maximum calculations for the seizure data. The same process was applied to 
the non-seizure data. 
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Figure 2: Code for the discrete energy minima and maxima values 
 
 Discrete energy values were then plotted against their corresponding times (in seconds) 
to measure qualitative data and for comparisons. 
 

 
Figure 3: Code for the discrete energy graphs 
 
 After the graphs were analyzed, the differences of the discrete energy values were 
computed. The higher discrete energy differences meant that the discrete energy graphs had 
more variability and drastic changes. This can be seen when the discrete energy graph has a 
higher oscillation and thus leads to less predictable data. Discrete energy differences were then 
stored in arrays for both seizure and non-seizure data. T-tests were also run between the 
discrete energy differences for those values to determine their statistical significance.

 
Figure 4: Code to calculate the discrete energy differences for the seizure and non-seizure data. 
 
 A neural network with three layers was developed to examine the discrete differences 
between the seizure and non-seizure values. It took in two 1-D numpy arrays of the discrete 
energy differences, consisting of the seizure and non-seizure arrays. The data was split so that 
80% of the data was used for training and 20% was used for testing, and the accuracy of the 
model was evaluated at the end of testing. The purpose of this neural network was to determine 
if the algorithm could classify whether or not it could be determined if the EEG belonged to the 
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seizure or non-seizure groups solely based on the discrete energy differences. The sequential 
neural network model was used with the sigmoid and ReLU activation functions to improve the 
speed of the neural network. The model was then compiled, trained, and tested. During 
compiling, the Adam optimizer and the binary cross entropy loss were used. 

 
Figure 5: Neural network used to determine if the patient was experiencing a seizure based on 
their discrete energy differences.  
 
The Hurst exponents of the data were also calculated and analyzed. 
 

 
Figure 6: Code used to calculate Hurst exponents of the timeseries EEG data. 
 
Results 
 

The discrete energy values for the seizure data generally ranged between 9.00 1096 to ×
8.78 10116 while the discrete energy values for the non-seizure data ranged between 2.48 10104 × ×
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to 1.79 10124, after the removal of outliers. On average, the discrete energy values for the ×
seizure EEG data with all 23 channels was higher than the discrete energy values for the 
non-seizure EEG data.  

 
Figure 7: Computation of the thresholds for seizure and non-seizure data’s threshold 
 
 Discrete energy graphs were also made for each subject’s seizure and non-seizure 
discrete energy values. The non-seizure discrete energy graphs tended to have higher 
oscillations and amplitudes, especially in the beginning of the graph. The non-seizure data also 
had higher discrete energy values than the seizure data, as could be explained by the higher 
threshold for discrete energy in the non-seizure data. The seizure discrete energy graphs were 
more predictable and often converged to a certain value, while the non-seizure discrete energy 
data were less reliable and oscillated more. Discrete energy graphs generally had a short period 
of instability and distinctive behavior towards the beginning. All discrete energy graphs were 
only read in EEG data spanning 1 second. 
 

 
Graph 1: Discrete energy graph for chb04_28, no seizure 
 

 
Graph 2: Discrete energy graph for chb04_28, seizure 
 
 The accuracy of the neural network that predicted whether the subject was seizing or not 
based on their discrete energies was computed and then analyzed. The highest accuracy 
recorded was 86.79% and its corresponding test loss was 36.48%.  
 

 
Figure 8: Computed test loss and accuracy of neural network 
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Inferential Statistics 
 
 T-tests were conducted between all experimental groups. The data for the differences of 
discrete energy ranges in seizure and non-seizure data was statistically significant. The p-value 
for the comparisons between the minimum discrete energies for the seizure and non seizure 
values was 2.33 10-5. The p-value for the comparisons between the maximum discrete ×
energies for the seizure and non seizure values was 2.82 10-8.  ×
 
 All discrete energy differences values for seizure and non-seizure data were recorded 
and stored. A t-test was run to compare these two groups and the p-value was 5.25 10-29. The ×
data was statistically significant.  
 
 The Hurst exponents for seizure and non-seizure data were recorded and stored. A t-test 
was run to compare these two groups and the p-value was 0.908. This data was not statistically 
significant. 
 
Discussions/Conclusions: 
 

Discrete energies were a very useful quantity when comparing seizure and non-seizure 
EEG data and are very promising in locating seizures on EEG data. By analyzing and locating 
seizures on the EEG through this machine-automated algorithm, diagnosing epilepsy could 
become easier for healthcare professionals compared to traditional manual methods. Overall, 
discrete energy values for seizure EEG data was lower than the non-seizure EEG data. This is 
an additional factor that can assist people in differentiating between seizure and non-seizure 
EEG data. This property can also be seen in Graph 1 and Graph 2, where Graph 1, modeling 
seizure discrete energy values, contained more unstable and distinctive behavior, which 
resulted in greater discrete energy values and greater discrete differences. 

 
The neural network is also a very promising tool for analyzing EEG data. It had a high 

accuracy of 86.8%, meaning that the discrete energy values for the seizure and non-seizure 
EEG data were effective at determining whether the EEG data belonged to the seizure or 
non-seizure group. Another advantage to this model was its speed. Results were obtained in 
less than seconds, which is crucial in medicine where the speed of making a diagnosis could 
make the difference between life and death. Pediatric seizure data is also easier to misinterpret 
due to the many factors that can result in misdiagnosis. Currently, there are no foolproof 
methods for diagnosing seizures using solely an EEG (Sirven et al., 2013). This pioneering 
study was one of the first to successfully apply discrete energy values to medical research. 
Given the potential of discrete energy in classifying pediatric EEG seizure data, this new 
mathematical concept warrants further exploration in medical and neuroscience research. The 
neural network is an encouraging tool that can aid healthcare professionals in their diagnosis 
and treatment plans.  

 
Comparing the Hurst exponents of the seizure and non-seizure EEG data was ineffective, 

as the data was not statistically significant. This shows that fBm and its properties could not be 
used to successfully compare the two groups. This experiment was also developed at no cost, 
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meaning that it can be easily accessible by everyone, regardless of income or access to a 
medical provider. 

Due to the nature of this experiment, there were no ethical or safety concerns that this 
experiment needed to address. A possible limitation of this experiment was that only 1 second 
of EEG data was analyzed. This 1 second interval either took place during the time the patient 
was seizing, or at a time where the patient was not seizing, depending on what group they 
belonged in. Only 1 second of EEG data was analyzed due to the computer processing time that 
it would take to analyze a larger amount of data. On the contrary, this could be a strength of the 
project as the algorithm was able to detect a seizure over the span of one second, making it 
both effective and efficient. The length of time for the processed data is also an important 
constant that was kept uniform throughout the experiment. In the future, larger amounts of data 
could be analyzed to process the entire EEG and improve neural network accuracy as better 
technology becomes available. 

 
This data can help enhance the accuracy of seizure diagnoses in children. The neural 

network was both efficient and effective in rapidly distinguishing between seizure and 
non-seizure EEG patterns.  
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