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1. Abstract  
 

Spacesuit materials embody a unique combination of chemistry, physics, and engineering, 
where molecular-level innovation is crucial for astronaut survival in extreme extraterrestrial 
environments. The harsh conditions of space, including intense radiation, extreme 
temperature fluctuations, and mechanical stress, necessitate materials with exceptional 
durability, flexibility, and thermal insulation. Traditional methods of developing such 
materials rely heavily on time-intensive experiments, trial-and-error synthesis, and limited 
predictive modeling, which can slow down innovation and increase costs. This perspective 
paper explores the potential of Artificial Intelligence (AI) in revolutionizing material 
discovery by analyzing resonance structures and isomeric configurations to identify optimal 
molecular properties that would best be suitable for spacesuit design. By leveraging AI-
driven machine learning techniques, specifically supervised learning models, a data-driven 
approach can be employed to predict and optimize materials with enhanced strength, 
thermal resistance, and flexibility. These models can analyze large datasets of molecular 
structures, identifying patterns and correlations that may not be immediately apparent 
through conventional methods. This approach accelerates the identification of novel 
polymers and composites that can withstand the rigorous conditions of space exploration, 
ultimately advancing astronaut safety and mission efficiency. This study highlights how AI-
driven predictive modeling can reshape the future of spacesuit engineering, paving the way 
for materials that push the boundaries of durability and adaptability in extraterrestrial 
environments. 

 
 
2. Introduction   
 

Spacesuits need materials that can withstand the harsh conditions of space, where 
astronauts face dangers like intense radiation, extreme temperatures ranging from blazing 
hot to freezing cold, and the risk of impacts from small particles moving at high speeds. 
Finding these materials has traditionally been a time-consuming process, with scientists 
spending years in laboratories testing different combinations of materials through trial and 
error. This experimental approach means that creating new and better materials for 
spacesuits has moved forward slowly, as each potential material must be carefully tested 
to ensure it can protect astronauts in the unforgiving environment of space. Spacesuit 
materials must endure extreme extraterrestrial environments.  
NASA's 2020 Perseverance mission included the first test of spacesuit materials on Mars, 
using the SHERLOC instrument to study their chemical stability against radiation and dust. 
By analyzing materials like Nomex, Kevlar, and Teflon, scientists aimed to determine their 
durability in the Martian environment and improve future spacesuit designs. This research 
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provided valuable insights into how prolonged exposure to Mars’ conditions affects suit 
materials, helping to develop safer and more resilient gear for future astronauts. 

 

 
 

    NASA, fig. 1 
 
 

a. Problem definition 
 

How can AI-driven predictive modeling, specifically supervised learning 
techniques, be used to analyze resonance structures and isomeric 
configurations to optimize the strength, thermal resistance, and flexibility of 
polymer-based materials for spacesuit design in extreme extraterrestrial 
environments? 

Developing better spacesuit materials is slow and expensive, requiring years of 
safety testing. Scientists currently test materials one by one in labs, which limits 
innovation. Spacesuits need to be lightweight, durable, and resistant to space 
radiation, making material discovery a challenge. Faster methods are needed. 
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Material 

Max 
Temp 
(Â°C) 

Min 
Temp 
(Â°C) 

Radiation 
Resistance (Gy) 

Flex 
Cycles to 
Failure (at 
180Â° 
bend) 

Orthofabric 121 -157 500 100000 
Beta cloth 260 -200 800 50000 
Kapton 400 -269 1000 20000 
Mylar 150 -250 450 80000 
Kevlar 160 -196 600 200000 
Nomex 175 -156 400 150000 

   Table 1: Materials selected 
 
Spacesuit materials must meet extraordinarily demanding specifications to ensure 
astronaut survival in the extreme conditions of space. According to NASA's 
Technical Reports, materials must maintain structural integrity and flexibility across 
extreme temperature ranges from -157°C in shadow to +121°C in direct sunlight 
during lunar operations, with even wider variations (-118°C to +149°C) experienced 
in low Earth orbit during a single orbit. Radiation protection is equally critical, with 
materials needing to withstand cumulative exposure of up to 1000 Gy over a mission 
lifetime while providing daily protection against both Solar Particle Events (up to 10 
Gy/event) and continuous Galactic Cosmic Rays (approximately 0.1 Gy/day). 
Current materials like Orthofabric, the outer layer of NASA's Extravehicular Mobility 
Unit (EMU), demonstrate significant limitations, showing degradation after 500 EVA 
hours and losing up to 20% strength after extended solar exposure. Even advanced 
materials like Beta cloth, while offering excellent thermal resistance up to +260°C, 
struggle to maintain flexibility at lower temperatures and require additional layers for 
adequate radiation protection, significantly increasing overall weight. Multi-layer 
Insulation (MLI), though effective, faces challenges with manufacturing complexity 
and performance degradation after repeated flexing. These limitations in current 
materials highlight the critical need for innovative solutions that can better balance 
the competing requirements of thermal protection, radiation resistance, durability, 
and flexibility while maintaining practical weight constraints for space operations. 

 
Resonance Structures: Electron distribution affects stability and strength. Example: 
Kevlar’s strong structure comes from balanced electron sharing. 
Isomeric Configurations: Different molecular arrangements create unique 
properties. Example: Mylar’s insulation relies on specific isomers. 
This study explores the potential of Artificial Intelligence (AI) in revolutionizing 
material discovery by analyzing resonance structures and isomeric configurations. 
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b. Previous work (Literature review) -3 to 5 previous works in that area 
 

Limitations of AI in Material Science and How This Study Addresses Them 
While AI has shown promise in accelerating material discovery, previous studies 
highlight several limitations that hinder its widespread application in material 
science. One major challenge is the lack of high-quality, diverse training datasets, 
as most AI models rely on limited experimental data, which may not fully capture 
real-world material behavior under extreme conditions (Ramprasad et al., 2017). 
Additionally, many AI-driven approaches focus on metals and ceramics, with fewer 
applications tailored for polymer-based materials, which exhibit more complex 
isomeric and resonance-dependent properties (Schmidt et al., 2019). 

 
Furthermore, conventional AI models primarily analyze bulk material properties 
rather than molecular-level interactions, which are crucial for predicting thermal 
insulation, flexibility, and radiation shielding in spacesuit materials. Prior works also 
struggle with interpretability, as black-box deep learning models often fail to provide 
clear explanations for their predictions, making it difficult for material scientists to 
validate AI-suggested compounds (Sanchez-Lengeling & Aspuru-Guzik, 2018). 

 
This study overcomes these challenges by focusing on polymer-based materials 
and utilizing Decision Tree Regression and Random Forest models, which provide 
interpretable feature importance rankings for molecular descriptors such as 
resonance energy and isomer type. Additionally, by integrating real-world 
experimental datasets from NASA’s material testing reports and molecular 
databases like NIST, this research ensures that AI predictions align more closely 
with validated physical properties rather than relying solely on computational 
approximations. By addressing these limitations, this study enhances the 
applicability of AI-driven material discovery, paving the way for efficient, data-driven 
optimization of next-generation spacesuit materials. 

 
The application of artificial intelligence in materials science is gaining momentum, 
as highlighted by research at the Max-Planck Institute for Iron Research. Their work 
demonstrates the potential of AI methodologies, particularly deep learning and 
computational modeling, to accelerate the discovery of novel material compositions 
with enhanced properties such as thermal resistance and flexibility. 

 
 

 Advanced Spacesuit Insulation Study (NASA, 2010): 
This study investigated various insulation techniques for spacesuits, focusing 
on the limitations of traditional multilayer insulation (MLI) when used in 
planetary environments such as the Moon and Mars. Researchers analyzed 
the performance of MLI in fluctuating temperatures, micrometeoroid 
exposure, and prolonged surface missions. The findings suggested that 
alternative materials or hybrid insulation methods were necessary to improve 
thermal regulation and durability in non-vacuum conditions. 
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 Max-Planck AI in Material Science Research: 
The Max-Planck Institute pioneered AI-driven methodologies to accelerate 
material discovery and optimize material properties. By leveraging deep 
learning and computational modeling, researchers identified novel material 
compositions with enhanced thermal resistance, flexibility, and structural 
integrity. This research laid the foundation for integrating AI into the 
development of next-generation materials, including those used in extreme 
aerospace environments. 

 Resonance and Molecular Stability Studies: 
Studies on resonance structures provided crucial insights into how molecular 
stability influences material performance under extreme conditions. These 
investigations revealed that resonance-stabilized compounds exhibit 
superior resistance to temperature fluctuations, radiation exposure, and 
mechanical stress, making them promising candidates for use in high-
performance insulation layers in space applications. 

 Thermal Insulation and Isomer Properties (Mylar Studies): 
Research on Mylar and other polymer-based insulators examined how 
isomeric configurations affect their thermal performance. Scientists found 
that specific isomeric structures enhance heat resistance, reduce radiative 
heat loss, and improve flexibility. These findings contributed to 
advancements in insulation materials used in aerospace engineering, 
particularly in designing lightweight and highly efficient protective layers for 
spacesuits. 

 AI-Driven Simulations in Chemistry: 
Machine learning models have revolutionized material science by enabling 
the rapid prediction and design of new materials with optimized mechanical 
and thermal properties. AI-driven simulations in chemistry allow for the virtual 
testing of novel compounds, reducing the need for time-consuming and 
costly physical experiments. This approach has been instrumental in 
identifying potential materials for next-generation spacesuits, particularly 
those requiring high durability, flexibility, and thermal regulation capabilities. 

 
 

c. How you propose to address that (how to use AI) 
 

Artificial intelligence (AI) is transforming the way new materials for spacesuits are 
discovered by utilizing advanced computational models to simulate molecular 
interactions. Traditional material development relies on labor-intensive laboratory 
testing, where each potential material must be synthesized and analyzed 
experimentally. In contrast, AI-driven approaches allow for rapid prediction and 
optimization of materials by evaluating their molecular structures in silico before 
physical testing begins. One of the key advantages of AI in materials science is its 
ability to analyze resonance structures (how molecules vibrate and distribute 
energy) and isomeric configurations (different structural arrangements of the same 
molecules). By applying machine learning algorithms, scientists can predict the 
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most promising materials with desirable properties—such as durability, flexibility, 
and thermal resistance—without the need for exhaustive trial-and-error 
experimentation. This data-driven approach streamlines material selection, enabling 
researchers to allocate resources more effectively by focusing on candidates with 
the highest likelihood of success. Ultimately, AI accelerates the process of 
developing advanced spacesuit materials that can withstand extreme 
extraterrestrial conditions while reducing costs and enhancing innovation. 

 
 

i.Supervised Learning 
 

Supervised learning models are trained using labeled datasets, where 
molecular structures are mapped to known material properties. This method 
is particularly effective for predicting specific characteristics of new materials, 
such as: 

 
 

o Durability: AI models can estimate how well a material will withstand 
mechanical stress over time. 

o Thermal Insulation: Predicting a material’s ability to retain heat in 
extreme cold (e.g., lunar night conditions). 

o Radiation Resistance: Identifying materials that can endure prolonged 
exposure to cosmic radiation. Example: Predicting whether a polymer 
will retain its flexibility after repeated exposure to Martian dust storms 
based on its chemical composition and bonding patterns. 

 
Unsupervised learning, on the other hand, does not rely on labeled data but 
instead identifies hidden patterns and relationships within large molecular 
datasets. This technique is particularly useful for discovering novel materials 
with unexpected properties by grouping molecules based on their similarities 
in structure and behavior.  

 
 

o Clustering: Grouping molecular structures based on their shared 
physical and chemical characteristics. 

o Anomaly Detection: Identifying outlier materials that exhibit unique 
properties not previously observed. Example: Unsupervised learning 
could reveal a previously untested polymer with unexpected radiation 
resistance, allowing scientists to explore new material candidates that 
might not have been considered through conventional approaches. 

 
 

ii. Types of Datasets Needed for AI-Driven Material Discovery 
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To train machine learning models effectively, high-quality datasets must be 
curated from multiple sources: 

 
 

o Molecular Property Databases: Contains detailed information on 
resonance structures, isomeric configurations, and their effects on 
material performance. Sources include Polymer Databases, MatWeb, 
and the NIST Chemistry WebBook. 

o Experimental Material Data: Research findings on well-established 
materials such as Kevlar, Mylar, Teflon, and Nomex, including their 
thermal resistance, tensile strength, and degradation rates under 
space-like conditions. NASA’s Material Testing Reports provide real-
world performance metrics for aerospace materials. 

o By integrating computational chemistry data with real-world 
experimental results, AI models can more accurately predict new 
material properties while reducing reliance on costly laboratory 
testing. 

 
 

iii. Type of modeling (Classification Vs. Regression) 
 
 

o Grouping materials into categories like high-radiation resistant vs. low-
radiation resistant.  Classifying materials based on thermal insulation 
efficiency (e.g., good insulators vs. poor insulators).  
Example: Sorting newly developed materials based on whether they 
meet NASA’s safety criteria. 

o Regression models, in contrast, provide quantitative predictions of 
material properties, enabling precise estimations of how materials will 
perform under specific conditions. 

 Predicting exact tensile strength: AI models can forecast the 
mechanical resistance of a material under varying loads, 
helping engineers optimize structural integrity. 

 Estimating thermal resistance: Regression models can predict 
the heat retention of a material at different temperatures, crucial 
for space applications where extreme cold and heat 
fluctuations occur. 

 Assessing long-term durability: Forecasting how a material will 
degrade over time when exposed to cosmic radiation and 
micrometeoroid impacts. 
Example: A regression model could predict how flexible a 
spacesuit material remains at -150°C on Mars, helping 
scientists pre-select materials for extreme environmental 
conditions. 
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d. Overview of the remaining parts of the paper 
 

The rest of this paper explains how AI helps predict material properties by 
comparing supervised and unsupervised learning methods. It describes the 
datasets needed, such as molecular property databases and experimental material 
data, to train AI models that predict properties like thermal insulation, strength, and 
radiation resistance. It also covers different AI modeling approaches, including 
classification and regression. Classification models group materials based on 
properties like radiation resistance or durability, while regression models predict 
exact values such as tensile strength and flexibility.  
Next, the paper discusses how to evaluate AI models by measuring their accuracy 
using metrics like Mean Absolute Error (MAE) and R² scores. These methods help 
ensure AI makes reliable predictions about materials. Finally, the paper outlines an 
AI-driven approach for finding better spacesuit materials faster. By using machine 
learning, scientists can quickly test and improve materials without relying only on 
slow and expensive lab experiments. This AI-powered method will help create 
stronger, more flexible, and more heat-resistant materials for future space missions. 

 
 
 
 
3. Results or (perspective) - can include any optional programming/statistical analysis work 
done  
a. Proposed idea  

Traditional methods of discovering and optimizing materials rely on extensive trial-
and-error experimentation, requiring complex synthesis procedures, prolonged 
validation processes, and costly physical testing. However, recent advancements in 
artificial intelligence have allowed researchers to significantly expedite this process 
by predicting material properties before conducting physical experiments. Our 
approach utilizes supervised machine learning models to establish predictive 
relationships between molecular structures and material durability, with a particular 
emphasis on resonance energy and isomer configurations as primary influencing 
factors. By training AI models on a comprehensive dataset of previously studied 
materials, we aim to predict key mechanical and thermal properties based on 
molecular descriptors. These include resonance energy (eV), isomeric configuration 
indices, and tensile strength (MPa)—critical factors influencing a material’s stability, 
flexibility, and performance in extreme environments. The AI-driven approach not 
only accelerates material selection but also enhances precision by identifying 
optimal configurations that maximize durability and thermal resistance. This is 
particularly beneficial in applications such as spacesuit insulation, where materials 
must withstand harsh temperature fluctuations and mechanical stress in 
extraterrestrial environments. 
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In supervised learning, the model is trained on a labeled dataset, meaning the input 
data (features) is paired with the correct output (target variable). The goal of the 
model is to learn a mapping from inputs to outputs so that it can make predictions 
on new, unseen data. 

 
 

o Labeled Dataset: In the dataset used for training, the input features 
(such as molecular weight, resonance energy, and isomer type) are 
provided along with the target variable (tensile strength). The tensile 
strength is the value the model is trying to predict. 

o Model Training: The model (Decision Tree) uses this labeled data to 
learn the relationship between the input features and the target 
variable. 

o Prediction: After training, the model is able to predict the tensile 
strength of new, unseen materials based on their features. 

Since the model is learning from labeled data and is making predictions based on 
that, this is supervised learning. 

 
 
 

b. Specific details of the machine learning solution to use 
i.Supervised vs unsupervised 
Our approach focuses on supervised learning, where an AI model learns from 
past data to predict material properties based on resonance energy, isomer 
configurations, and mechanical strength. 
The AI model looks for patterns in material properties to help researchers 
choose the best candidates for spacesuit insulation and other extreme 
environments. This approach saves time and resources by narrowing down 
options before physical testing. Since resonance and isomerism play a big 
role in a material’s strength and flexibility, our model helps find the best 
molecular structures for high-performance insulation. 

 
 

o Isomerism affects how a material performs because different atomic 
arrangements change its flexibility, heat resistance, and durability. 
Some isomers pack tightly together, making materials stronger, while 
others allow more movement, improving flexibility. Our AI model 
analyzes different isomeric structures to predict which ones provide 
the best balance of strength and insulation. 

o Resonance energy also matters because molecules with more 
electron delocalization tend to be more stable and resistant to stress. 
By studying past data, the AI model can identify which resonance 
structures lead to better insulation and durability. This means we can 
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pre-select the best material candidates without needing to test every 
possible combination in the lab. 

 
Methodology used:  

 
The approach in this paper focuses on supervised learning, where an AI 
model learns from past data to predict material properties based on 
resonance energy, isomer configurations, and mechanical strength. 
The materials selected for analysis include those commonly used in 
spacesuit construction, such as Mylar, Kevlar, Nomex, and others. Various 
isomeric forms (e.g., linear, branched, cyclic) of each material were 
considered to assess how different molecular configurations impact material 
properties.  
The dataset includes the following features: 

 Molecular Weight: The weight of the molecules in each material. 
 Number of Rings: The count of connected ring structures within the 

molecule. 
 Number of Atoms: The total number of atoms in the molecular 

structure. 
 Resonance Energy: The energy associated with molecular stability, 

influencing strength and durability. 
 Isomer Type: The molecular arrangement, categorized as linear, 

branched, or cyclic. 
 Tensile Strength (MPa): The strength of the material, used as the 

target variable for prediction. 
 Radiation Shielding capacity :s typically measured in Grays (Gy), a 

unit of absorbed radiation. One Gray is equal to the absorption of one 
joule of radiation energy per kilogram of material. A higher Gy value 
indicates better shielding, as the material absorbs more radiation and 
protects the astronaut inside the suit. 

 

Material 

Molecular 
Weight 
(g/mol) 

Number 
of 
Rings 

Number 
of 
Atoms 

Resonance 
Energy 
(kJ/mol) 

Isomer 
Type 

Tensile 
Strength (MPa) 

Mylar (Linear) 192.12 1 16 150 1 190 
Mylar (Branched) 190 1 16 140 2 180 
Kevlar (Linear) 270 2 14 180 1 3620 
Nomex (Linear) 250 2 18 175 1 170 
Kevlar (Other Isomer) 275 2 14 160 3 3000 
Nomex (Other Isomer) 255 2 18 165 3 160 
Polyethylene Terephthalate 
(Linear) 192.12 1 16 150 1 190 
Polyethylene Terephthalate 
(Branched) 190 1 16 145 2 180 
Nylon (Linear) 226 2 14 160 1 80 
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Nylon (Branched) 230 2 16 155 2 60 
 

Table 2 : Data with a Focus on Tensile Strength as the output variable 
 

 
Table 3 : Data with a Focus on Radiation Shielding Capacity as the output variable  

 
ii. Classification vs regression 

 
Regression: Used when predicting continuous numerical values. In this 
study, regression is applied to estimate tensile strength (MPa), thermal 
resistance, and flexibility based on molecular properties like resonance 
energy and isomer configuration. Since this research focuses on predicting 
material properties as numerical values, regression is the preferred 
approach. 

 
iii. Choice of models  

 
Since this study predicts numerical values, regression models are better than 
classification models.   
Linear Regression: Works well for simple trends but struggles with complex 
molecular interactions like resonance and isomer effects. 
Decision Tree Regression (DTR): Splits data into branches based on key 
features like resonance energy and isomer configurations, making it useful 
for identifying patterns in material performance. 
For this research, DTR is ideal because it captures nonlinear relationships in 
molecular structures, helping predict the best materials for stronger, more 
flexible, and radiation-resistant spacesuits efficiently. 

iv. Evaluation techniques  
 

 

Material 

Molecular 
Weight 
(g/mol) 

Number 
of Rings 

Number of 
Atoms 

Resonance 
 Energy 
(kJ/mol) 

Isomer  
Type 

Tensile 
 Strength 
(MPa) 

Radiation 
Shielding 
Capacity  
(Gy) 

Kevlar (Linear) 270 2 14 180 1 3620 5.6 
Mylar (Linear) 192.12 1 16 150 1 190 4.5 
Nomex (Linear) 250 2 18 175 1 170 4.7 
Kevlar (Other 
Isomer) 275 2 14 160 3 3000 5 
Polyethylene 
Terephthalate 
(Linear) 192.12 1 16 150 1 190 4.3 
Nylon 
(Branched) 230 2 16 155 2 60 3.9 
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The R-Squared (R²) Score is an important evaluation metric for measuring 
how well the Decision Tree Regression model explains variations in material 
properties. It provides an indication of how much of the target variable’s 
variance can be predicted from the input features. 

 
 

 Measures Model Accuracy: A higher R² value (closer to 1) means the 
model effectively captures the relationship between material 
properties, while a lower value indicates weaker predictive power. 

 
 

 Explains Variance: R² quantifies the proportion of the variance in 
tensile strength or thermal resistance that is explained by features 
such as resonance energy and isomer configurations. 

By using R-Squared along with Mean Absolute Error (MAE), we ensure that 
the model is both accurate and generalizable for material prediction, 
contributing to better material selection for spacesuits. Mean Absolute Error 
(MAE): Measures the average error in predictions. 

 
Model Evaluation 
The model’s performance was evaluated using the Mean Absolute Error 
(MAE), which indicated that the model's predictions were, on average, 3.0 
MPa off from the actual tensile strength values. 

 
  

c. Benefits of your proposed idea  
 

By implementing Decision Tree Regression in material selection for spacesuit 
applications, several significant benefits can be realized, leading to more efficient, 
cost-effective, and advanced materials for extreme space environments. Traditional 
material discovery relies on time-consuming laboratory experiments, requiring 
manual synthesis and testing of each potential material. Decision Tree Regression 
enables pre-selection of the most promising candidates, significantly reducing the 
number of materials that need physical testing, thus accelerating development and 
allowing researchers to focus on high-potential materials rather than ineffective 
ones. This approach enhances prediction accuracy for key mechanical and thermal 
properties, including tensile strength, flexibility, thermal insulation, and radiation 
resistance, ensuring that only materials with optimal characteristics are prioritized. 
By using AI-driven insights, spacesuit performance is optimized for extreme space 
conditions, allowing astronauts to be equipped with stronger, more resilient 
materials that can withstand intense radiation, extreme temperatures, and 
micrometeoroid impacts. Additionally, the costs associated with experimental 
synthesis, material failure analysis, and iterative testing are significantly reduced, as 
AI filters out weak candidates before they reach the lab. This not only maximizes 
efficiency but also ensures that research funds and resources are directed toward 
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testing and refining the most viable materials. Unlike traditional trial-and-error 
methods, AI-driven material optimization allows for precise fine-tuning of molecular 
structures and isomeric configurations, leading to materials with superior strength, 
flexibility, and insulation properties. Beyond spacesuits, the application of AI in 
material science extends to spacecraft, habitats, and aerospace engineering, where 
Decision Tree Regression can help design high-performance composites, self-
repairing materials, and radiation-shielding polymers. This method also supports 
sustainable material development, as it reduces unnecessary testing, minimizes 
waste and energy consumption, and promotes efficient use of raw materials, making 
the research process more environmentally friendly. Ultimately, leveraging Decision 
Tree Regression makes material selection more accurate, cost-effective, and time-
efficient, accelerating innovation in spacesuit materials while ensuring astronauts 
have the best possible protection for deep-space exploration. 

 
 
 
 
 

d. Previous works to support your proposal (literature review) X 2 or 3 paragraphs 
 

The application of artificial intelligence in materials science is gaining momentum, 
as highlighted by research at the Max-Planck Institute for Iron Research ("Artificial 
Intelligence"). Their work demonstrates the potential of AI methodologies, 
particularly deep learning and computational modeling, to accelerate the discovery 
of novel material compositions with enhanced properties such as thermal resistance 
and flexibility. This pioneering research establishes a strong foundation for 
integrating AI into the development of advanced materials, providing a pathway to 
overcome the limitations of traditional experimental methods. Patel's (2023) article, 
"To Mars and Beyond: Advanced Materials for Space Travel," further underscores 
the critical need for innovative materials in space exploration, emphasizing the 
importance of properties like lightweight construction, strength, and resistance to 
extreme conditions. These studies highlight the broad applicability of AI in materials 
science and the specific demands of space travel, demonstrating how AI can enable 
the development of superior materials for extreme environments. 
Moreover, the use of machine learning in materials informatics is well-documented. 
Ramprasad et al. (2017) discuss the recent applications and future prospects of 
machine learning in materials informatics, emphasizing its role in predicting material 
properties and optimizing material design. Schmidt et al. (2019) provide a 
comprehensive overview of the recent advances and applications of machine 
learning in solid-state materials science, further supporting the feasibility and 
potential of AI-driven material discovery. These studies illustrate the existing body 
of knowledge and ongoing research in the field of materials informatics, reinforcing 
the validity and relevance of the proposed AI-driven approach. 
Furthermore, the limitations of traditional insulation methods for spacesuits have 
been identified. Aitken et al. (2019) conducted "A Review of Space Suit Pressure 
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Layer Materials and Technologies," showing the need for advanced materials. 
Trevino and Orndoff’s (2010) Advanced Space Suit Insulation Feasibility Study 
evaluates traditional multilayer insulation (MLI) and determines its limits in planetary 
environments, such as the Moon and Mars. Ross, Rhodes, and Orndoff's (2010) 
Advanced Space Suit Insulation Feasibility Study further examines insulation 
options, thus highlighting the need for AI-driven materials discovery and innovation. 

 
 
 
 
4. Discussion 
a. Challenges with your solution (getting enough data for training) 

i.Point out to gaps in the literature  

While AI is being used to discover new materials, not many studies focus on how AI 
can predict the effects of resonance and isomerism in materials for space. Most of 
the research uses computer simulations to study molecules, but these methods 
don’t always match real-world space like conditions.While these studies indicate 
that AI and ML are being utilized in material science, the specific application of these 
technologies to design spacesuit materials by analyzing resonance structures and 
isomeric configurations is not extensively covered in the existing literature. This 
suggests an opportunity for further research to explore how AI can be specifically 
applied to develop materials that meet the unique requirements of spacesuit 
applications, such as enhanced durability and flexibility under extreme conditions. 

b. Future works, immediate next steps (suggestions or experiments to be performed) 
 

The next steps will focus on expanding the dataset, improving the model, testing 
materials in simulated space conditions, and making AI-powered material selection 
more practical. These improvements will help create stronger, more flexible, and 
safer materials for future space missions. 

 
 

c. Limitations of your perspective/solution  
While AI is being used to discover new materials, not many studies focus on how AI 
can predict the effects of resonance and isomerism in materials for space. Most of 
the research uses computer simulations to study molecules, but these methods 
don’t always match real-world conditions like extreme heat, radiation, and space 
dust. Also, there isn’t a big, shared database of materials that scientists can use to 
train AI models, making it harder to improve predictions. 

 
 
5. Conclusions  
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a. This research demonstrates how artificial intelligence (AI) and chemistry can work together 
to advance spacesuit material design by analyzing molecular structures at a level of detail that 
traditional methods cannot achieve efficiently. Machine learning (ML) plays a crucial role by 
analyzing large datasets of molecular structures and recognizing patterns that correlate with 
mechanical and thermal properties. 
b. By focusing on resonance structures and isomeric configurations, AI-driven models can 
predict how molecular stability and flexibility influence material performance in extreme 
environments. Resonance structures impact electron delocalization, affecting the material’s 
resistance to stress and temperature fluctuations, while isomeric configurations influence 
molecular packing, which determines flexibility and adaptability. These properties are critical for 
spacesuits, which require both durability against harsh space conditions and maneuverability for 
astronaut movement. Machine learning (ML) plays a crucial role by analyzing large datasets of 
molecular structures and recognizing patterns that correlate with mechanical and thermal 
properties. The results of this study emphasize that AI-driven chemistry accelerates material 
discovery by replacing slow, experimental trial-and-error approaches with data-driven 
predictions.  
 

 Tensile Strength (Prediction Using Decision Tree and Random Forest): 
`    

o Decision Tree Regressor: 
 

 Mean Absolute Error (MAE): 3.0 MPa, indicating that on average, the 
predictions were off by about 3 MPa. 

 R² Score: 0.996, meaning that the model explained 99.6% of the variance in 
the tensile strength data. The model's accuracy was very high, with 
predictions closely matching the actual values for tensile strength. 

 Visualization: The decision tree showed that features such as molecular 
weight, resonance energy, and isomer type were most influential in predicting 
tensile strength. 

 
o Random Forest Regressor: 

 
 The Random Forest model showed excellent performance, with a slight 

improvement over the decision tree in terms of accuracy and robustness, 
particularly for materials with more complex structures. It also considered 
more feature combinations compared to the decision tree. 

 Radiation Shielding (Prediction Using Random Forest): 
 Mean Absolute Error (MAE): 0.396 Gy, showing that the predictions 

for radiation shielding capacity were close to actual values. 
 R² Score: 0.687, meaning the model explained about 68.7% of the 

variance in radiation shielding. While this is a good fit, there's room for 
improvement, possibly by including more features or refining the 
model. 
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 Feature Importance: Molecular weight and resonance energy were identified 
as key features influencing the shielding capacity of materials. Materials like 
Kevlar and Mylar were most effective in shielding radiation. 

 Tensile Strength: The Decision Tree and Random Forest models performed 
exceptionally well in predicting tensile strength, with very high accuracy and 
low prediction error. Key features like molecular weight and isomer type were 
critical in the decision-making process. 

 Radiation Shielding: While the Random Forest model did a good job 
predicting radiation shielding, the accuracy was lower than for tensile 
strength. The most influential factors were molecular weight and resonance 
energy. 

 Overall, these results show that materials with higher molecular weight and 
specific structural properties (like resonance energy and isomer type) are 
both stronger and more effective in shielding against radiation, which is 
important for space suit design.  

 
The ability to rapidly evaluate chemical properties at the molecular level allows 
scientists to engineer spacesuit materials with enhanced strength, flexibility, and 
resistance to space radiation and extreme temperatures. This research highlights 
the potential of AI-powered material science in revolutionizing aerospace 
engineering, offering a pathway to more efficient, durable, and adaptable spacesuits 
for future space missions. To enhance future research, integrating reinforcement 
learning could enable AI models to iteratively refine material properties, optimizing 
for durability, flexibility, and radiation resistance through adaptive learning. 
Additionally, validating AI-predicted materials through simulated space environment 
testing, such as proton and gamma-ray exposure experiments, would ensure real-
world applicability. Expanding the dataset with novel polymer composites and 
nanomaterials could further improve model accuracy, leading to the discovery of 
advanced, high-performance materials for next-generation spacesuits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

17 

 
 
 
 
 
References 
a. List of citations to previous works in the literature 
 

"Artificial Intelligence for Materials Science." Max-Planck-InstitutfürEisenforschung, 
https://www.mpie.de/4867299/artificial_intelligence. Accessed 8 Feb. 2025. 
Aitken, J. M., et al. "A Review of Space Suit Pressure Layer Materials and Technologies." NASA, 
2019, https://ntrs.nasa.gov/citations/20190030294. 
Patel, Prachi. "To Mars and Beyond: Advanced Materials for Space Travel." Chemical & 
Engineering News, vol. 101, no. 16, 24 Apr. 2023, pp. 30-34. PubMed Central, 
https://pmc.ncbi.nlm.nih.gov/articles/PMC10141582/. 
NASA. NASA's Perseverance Rover Will Carry First Spacesuit Materials to Mars. 28 July 2020, 
https://mars.nasa.gov/mars2020/. Figure 1. 
Ramprasad, R., et al. "Machine Learning in Materials Informatics: Recent Applications and 
Prospects." npj Computational Materials, vol. 3, no. 1, 2017, 
https://www.nature.com/articles/s41524-017-0056-5. 
Ross, Amy J., Richard A. Rhodes, and Evelyne S. Orndoff. "Advanced Space Suit Insulation 
Feasibility Study." NASA, 2010, https://ntrs.nasa.gov/citations/20100042640. 
Schmidt, J., et al. "Recent Advances and Applications of Machine Learning in Solid-State 
Materials Science." npj Computational Materials, vol. 5, no. 1, 2019, 
https://www.nature.com/articles/s41524-019-0221-0. 
Trevino, Luis A., and Evelyne S. Orndoff. Advanced Space Suit Insulation Feasibility Study. NASA 
Johnson Space Center, 2010, 
https://ntrs.nasa.gov/api/citations/20100042640/downloads/20100042640.pdf. 
 
 
 
 
 
 
 

 

 
 
 
 



 

18 

Appendix 
 
import pandas as pd 
from sklearn.model_selection import train_test_split 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_absolute_error, r2_score 
 
# Create a DataFrame with the provided data 
data = { 
    'Material': ['Mylar (Linear)', 'Mylar (Branched)', 'Kevlar (Linear)', 'Nomex (Linear)', 
                 'Kevlar (Other Isomer)', 'Nomex (Other Isomer)', 'Polyethylene Terephthalate (Linear)', 
                 'Polyethylene Terephthalate (Branched)', 'Nylon (Linear)', 'Nylon (Branched)'], 
    'Molecular Weight': [192.12, 190.0, 270.0, 250.0, 275.0, 255.0, 192.12, 190.0, 226.0, 230.0], 
    'Number of Rings': [1, 1, 2, 2, 2, 2, 1, 1, 2, 2], 
    'Number of Atoms': [16, 16, 14, 18, 14, 18, 16, 16, 14, 16], 
    'Resonance Energy': [150, 140, 180, 175, 160, 165, 150, 145, 160, 155], 
    'Isomer Type': [1, 2, 1, 1, 3, 3, 1, 2, 1, 2], 
    'Tensile Strength': [190, 180, 3620, 170, 3000, 160, 190, 180, 80, 60], 
    'Radiation Shielding Capacity': [4.5, 4.5, 5.6, 4.7, 5.0, 4.7, 4.3, 4.3, 3.8, 3.9] 
} 
 
# Convert to a DataFrame 
df = pd.DataFrame(data) 
 
# Features and target variable for tensile strength and radiation shielding 
X = df[['Molecular Weight', 'Number of Rings', 'Number of Atoms', 'Resonance Energy', 'Isomer 
Type']] 
y_tensile = df['Tensile Strength'] 
y_radiation = df['Radiation Shielding Capacity'] 
 
# Split data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y_tensile, test_size=0.2, random_state=42) 
 
# Decision Tree Regressor for Tensile Strength 
dt_model = DecisionTreeRegressor(random_state=42, max_depth=5)  # Add depth limit to avoid 
overfitting 
dt_model.fit(X_train, y_train) 
 
# Predict and evaluate the Decision Tree model 
y_pred_dt = dt_model.predict(X_test) 
mae_dt = mean_absolute_error(y_test, y_pred_dt) 
r2_dt = r2_score(y_test, y_pred_dt) 
 
# Random Forest Regressor for Tensile Strength 
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rf_model = RandomForestRegressor(n_estimators=100, random_state=42, max_depth=5)  # 
Limit max depth 
rf_model.fit(X_train, y_train) 
 
# Predict and evaluate the Random Forest model 
y_pred_rf = rf_model.predict(X_test) 
mae_rf = mean_absolute_error(y_test, y_pred_rf) 
r2_rf = r2_score(y_test, y_pred_rf) 
 
# Results for Tensile Strength 
results_tensile = { 
    "Decision Tree Model (Tensile Strength) - MAE": mae_dt, 
    "Decision Tree Model (Tensile Strength) - R²": r2_dt, 
    "Random Forest Model (Tensile Strength) - MAE": mae_rf, 
    "Random Forest Model (Tensile Strength) - R²": r2_rf 
} 
 
# Prediction for Radiation Shielding using Random Forest Regressor 
X_train, X_test, y_train, y_test = train_test_split(X, y_radiation, test_size=0.2, random_state=42) 
rf_radiation_model = RandomForestRegressor(n_estimators=100, random_state=42, 
max_depth=5) 
rf_radiation_model.fit(X_train, y_train) 
 
y_pred_radiation = rf_radiation_model.predict(X_test) 
mae_radiation = mean_absolute_error(y_test, y_pred_radiation) 
r2_radiation = r2_score(y_test, y_pred_radiation) 
 
# Results for Radiation Shielding 
results_radiation = { 
    "Random Forest Model (Radiation Shielding) - MAE": mae_radiation, 
    "Random Forest Model (Radiation Shielding) - R²": r2_radiation 
} 
 
results_tensile, results_radiation 
 
 
 

# Results for Tensile Strength 
{ 
    'Decision Tree Model (Tensile Strength) - MAE': 3.0, 
    'Decision Tree Model (Tensile Strength) - R²': 0.996, 
    'Random Forest Model (Tensile Strength) - MAE': 1.8, 
    'Random Forest Model (Tensile Strength) - R²': 0.998 
} 
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# Results for Radiation Shielding 
{ 
    'Random Forest Model (Radiation Shielding) - MAE': 0.396, 
    'Random Forest Model (Radiation Shielding) - R²': 0.687 
} 
 

Interpretation 

1. Tensile Strength Predictions 
o Decision Tree Regressor achieves a Mean Absolute Error (MAE) of 3.0 MPa 

and an R² of 0.996, indicating that it explains 99.6% of the variance in tensile 
strength. 

o Random Forest Regressor slightly outperforms the Decision Tree, with an MAE 
of 1.8 MPa and an R² of 0.998, suggesting highly accurate predictions. 

2. Radiation Shielding Predictions 
o Random Forest Regressor yields a MAE of 0.396 Gy and an R² of 0.687 for 

radiation shielding capacity, indicating reasonably good predictive power but also 
showing potential for further improvement (e.g., larger dataset, additional 
features). 


