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Abstract
Born in science fiction but becoming increasingly real, the space elevator, if possible, is
a compelling alternative to the inefficiencies of modern staged rockets. A space elevator
is simply a physical connection between a point on the Earth and a counterweight in

geostationary orbit, along which cargo can travel. This has several goals: to increase our
capacity to access the resources of our solar system, to reduce the environmental strain

we exert on our planet, and to further the various component fields of science
necessarily involved in such an effort. A space elevator is at once very simple and very
complex. Although the underlying principles of a taut cable with objects able to move

along it are relatively intuitive, the stress placed on the cable is immense, and designing
a material capable of withstanding the pressure without becoming prohibitively bulky
through tapering is a challenge that we will assess. The purpose of this paper is to

examine current methodology of development, illustrate the forces that would act on the
space elevator system, and evaluate the feasibility and timeline of the device. First, a

background of basic celestial mechanics will be provided, following Keplerian
mechanics, with the two body assumption that only the gravitational effects of the Earth
must be accounted for. With that, a simplified gravity gradient model will be introduced to

identify the moments on the spacecraft and inform the design of the counterweight
system. Finally, this paper will identify the material and structural design necessary to

construct a space elevator and its manufacturing feasibility.

Station Background
The idea of a space elevator is a tethered space station anchored on Earth and extending out
past the atmosphere in order to facilitate transport between Earth and space. The possibilities of
what could be done with a space station that has access to the full scope of Earth’s resources
broaden immensely. Compared to a rocket’s ascent, any mechanical elevator would have a
relatively slow and smooth journey. The cost of a journey per unit of mass would also steeply
drop, as the fuel required would be negligible in comparison to the fuel for typical launch
providers. In FY2000 dollars, the estimated total cost to deliver a satellite to Geostationary Orbit
was roughly $214M onboard a Titan IV launch vehicle [1]. For scientific experimentation, this is
critical, because the two barriers to space experimentation are the prohibitive cost of, for
instance, setting up a lab to study long term effects of outer space life on mice, and that the
journey itself would be impossible with volatile or delicate materials. Additionally, access to orbit
on the industrial scale would completely transform the world of spaceflight. Modern spacecraft’s
carrying capacity and size are largely constrained to combat the challenge of getting out of the
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atmosphere. Beginning from orbit would cost-effectively bring into reach our solar system and
beyond for spectacular and specialized new forms of spacecraft.

Orbital Mechanics
In order for space elevators to function properly, the elevator’s station must stay directly above
its relevant ground station on Earth. If the satellite counter weight is placed too far or too close
to the Earth, this will cause the counterweight, and therefore the tension cable itself, to drift and
eventually wrap around the Earth, a dire risk that must be avoided. In other words, its orbital
period must match the time it takes for Earth to complete a 360º rotation, or 1 day. Assuming
classical orbital mechanics in the Keplerian domain, the period of a spacecraft’s orbit may be
derived for Eq. 1 below. Where the mu term is the gravitational constant of the Earth and the r
term is the radius from the center of the Earth, to the spacecraft in a circular orbit. The circular
orbit assumption is valid here since the authors are only considering placement of the space
elevator in an orbit where the angular rates would be nearly constant, a requirement of the
system.

𝑇
𝐶𝑖𝑟𝑐 

=  2 π
µ

𝑟3/2

µ
𝐸

 =  3. 986 × 1014 𝑚3 

𝑠2

Defining T as 86,164 seconds and assuming a circular orbit, the correct distance from the center
of the earth derived from the equation above is found to be geostationary orbit (GEO) at 42,164
km from the core. This is where the station and counterweight will be located.

Force Analysis
In a space elevator model, the cable is placed under extreme stresses due to the immense
forces of tension acting along its length. Neglecting air friction and a safety margin the stress on
the cable at geostationary orbit may be derived by first setting equal the forces present on the
system [2]. Those forces being the stress differential across the cross sectional area, force of
gravity, and the centripetal acceleration force for a differential distance from the central body.

𝐴𝑑𝑇 = 𝐺𝑀(𝐴𝑑𝑟ρ)

𝑟2  − (𝐴𝑑𝑟ρ)ω2 𝑟

Dividing both sides by Adr provides
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This provides the final equation for the tensile strength at GEO as

𝑇 𝑅
𝑔( ) = 𝐺𝑀ρ 1

𝑅 − 3
2𝑅

𝑔
+ 𝑅2
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As an example of the tension present, given a material density value for , the radius in theρ
equation above may be varied to realize the tension at that point. An example case for the
carbon nanotube density of may be found in the figure below by integrating from the1740 𝑘𝑔

𝑚3 

surface of Earth to GEO radius.

Figure 1: Stress Magnitude Over Carbon Nanotube Tether Radius
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As may be seen in Fig. 1, the tensile strength required for a single tether presents
enormous stress on the system beyond the capabilities of any material available. In addition, it
may be noted in the figure above that the stress remains at a constant value of zero until the
radius reaches the radius of the Earth, since the tether must attach to a ground station on the
surface of the planet.

Cable Tapering
No material in production or currently under development has the high tensile strength and low
density to allow for a cable of uniform circumference stretching between the suggested location
of the counterweight and the Earth’s surface. Tapering the cable allows for reinforcement in
high-stress areas without making the cable as a whole prohibitively bulky. Should tapering be
required, the difference between the bottom and top areas of an infinitesimally small dr is
described by

𝑑𝐴
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𝑅
𝑔
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Integrate from the surface of the planet to GEO provides the required area at any radius.
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Canceling the natural log via exponentiation provides
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Simplification provides the final equation below which describes the area of a cross section of
the cable given a density at a point along the cable necessary to endure the tension at that𝐴 𝑟
radius.
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It may be noted that the above derivations do not account for specific material qualities outside
of density. Therefore, it may be more accurate to define the taper ratio according to Misra and
Cohen [3]. This definition provides additional insight because it also includes the stretching that

will occur under stress. Introducing the characteristic height and , the taperℎ ‾ =
σ

0

γ𝑔
0

ϵ
0 

 =  
σ

0

𝐸

ratio may be expressed by the equation below.
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Counterweight Addition
While the above derivations account for the mass of the cable used, a more efficient means of
balancing the experienced forces is to employ a counterweight [3]. By attaching a mass to the
end of the cable that extends beyond GEO, the overall length of the cable may be reduced and
the total required mass of the system may also be reduced. Integrating the previous equations
results in the boundary condition that the cross sectional area is zero at the end of the cable.
However, it is clear that the area of the cross section of the ribbon cannot be zero at any
location for this case of constant stress. Thus, to satisfy the boundary condition at the tip of the
ribbon, a mass mc (the counterweight) must be attached there. The forces acting on the
counterweight can be made equal to the tension at the tip by forcing,

𝑚
𝑐 

(Ω2 (𝑅
𝐸 

+ 𝐿) − µ/(𝑅
𝐸 

+ 𝐿)2) =  σ
0 

𝐴(𝑠)|
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0 

Where is the rotational velocity found earlier and the right side of the equation is equivalent toΩ
the tension in the cable at that point. Augmenting the previous equation to account for the taper
ratio and the nominal strain present in the system, denoted , the adjusted mass of the(1 + ϵ

0
)

counter weight is modeled by

𝑚
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Modeling the counterweight mass as above offers the advantage of showing how the different
masses differ as the length of the cable changes. In addition, the total mass can be represented

in the figure below. In the figure below, a ribbon with and would𝐿
0

= 100, 000 𝑘𝑚 𝐴
𝑚

 = 10𝑚𝑚2
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have a mass of about 1,000 tons, assuming a taper ratio of 6x. The corresponding
counterweight mass would be about 300 tons. This is beneficial since mass put into orbit offers
one of the largest constraints to installing a system like the space elevator.

Figure 2: Mass/Maximum Cross Sectional Area vs Tether Length [3]

Available Materials
By generous usage of tapering, construction of a space elevator could begin today, with current
materials. However, any mass-producible material in existence today would require an
unrealistic amount of tapering to maintain structural integrity. Carbon nanotubes, which could
bear the load with a realistic tapering factor, are not currently produced in sufficient quantities to
build a space elevator.

Name of Material Carbon
Nanotubes

Steel Concrete Rubber

Density 1.74 𝑔/𝑐𝑚3 7.9 𝑔/𝑐𝑚3 2.4 𝑔/𝑐𝑚3 1.34 𝑔/𝑐𝑚3

Tensile Stress at
GEO

8.43 * 1013 3.83 * 1014 1.16 * 1014 6.50 * 1013

Stress at Earth 35.2 GPA 726 GPA 66 GPA 20.8 GPA

Yield Strength 150 𝐺𝑃𝐴 5 𝐺𝑃𝐴 5 𝑀𝑃𝐴 40 𝑀𝑃𝐴
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Young's Modulus
of Elasticity (E)

1000 𝐺𝑃𝐴 200 𝐺𝑃𝐴 40 𝐺𝑃𝐴 104 𝑁/𝑚2

Taper Factor 6.78 5. 7 * 1024 - -

The null spaces above are due to values being too large for standard 32 bit calculation. As can
be seen in the table above, the only material tested which could satisfy the constraints of stress
remaining below the maximum tensile strength is the carbon nanotube.

Timeline
The exactitudes for the roadmap of development for the space elevator are hotly debated. One
corporation, OBAYASHI, estimates that they will complete the entire undertaking by 2050.
Others argue that due to a lack of mass-production methods for carbon nanotubes or other
suitable materials, a space elevator will simply never be practical. In order to reduce the
bottleneck effects of limits on production of carbon nanotubes, a counterweight could be
employed as discussed earlier. This, in combination with reasonable growth in carbon nanotube
production, could make the space elevator possible. However, securing a celestial object or
launching sufficient mass for a counterweight would present challenges of its own. Overall, a
space elevator is not likely to be constructed by the earliest estimates of 2050, but has a
significant likelihood of becoming technologically possible in this century considering the high
likelihood that space will continue to be an area of technological innovation.

Conclusion

This paper provides an overview of space elevators, a groundbreaking technology with the
potential to transform satellite placement in orbit and propel humanity into an unprecedented
position of access to the solar system and beyond. It explores the achievable orbital parameters
through space elevators and offers a concise analysis of various factors, including ribbon length,
material stress, cross-sectional area variation, and counterweight mass. These factors are
crucial for designing an effective space elevator. In comparison to previous works on the same
subject, this paper incorporates previously neglected elements such as calculations for the
mass of the counterweight. The future of space elevators is compelling, despite its low
workability today. More work to explore the potential of carbon nanotubes and design of a space
elevator’s climbers could play an important role in the future of both the field and the species.
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