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Abstract
In the last decade, object detection and machine learning-based algorithms have

enhanced significantly, making self-driving vehicles a reality rather than a vision. Our research
explores the advancements in machine learning-based object detection methods and their
application to autonomous vehicle systems, specifically using the YOLO (You Only Look Once)
algorithm. We begin with an overview of the YOLO algorithm, covering the YOLO architecture
and comparing YOLO to alternatives like SSD and LiDAR. We then describe our case study in
which we trained our own YOLO model using a custom dataset. Next, we analyze the results
from the trained YOLO model to make conclusions about the YOLO algorithm. After conducting
a literature review of dozens of old experiments to compare the YOLO alternatives to YOLO
itself, we presented how YOLO is a better option for real-time driving scenarios in comparison to
SSD (Single Shot Detector) and LiDAR (Light Detection and Ranging). In our case study of
training a YOLOv8 model with our manually crafted dataset, the object detection accuracy for
the model went from 20% to about 90% in only 50 epochs. We concluded that our research has
highlighted YOLO’s power and high speed when it comes to driverless vehicle object detection,
but we also acknowledged the room available for future improvements to make roads safer.

I. Introduction
The advancement of self-driving technology has picked up speed in the last few years

with a key emphasis on helping vehicles recognize and interpret their surroundings better [25].
Object detection and machine learning-based algorithms have proven to be very promising in
making this vision a reality. Technological advancements have quickly improved vehicle safety
by reducing the possibility of crashes involving forward collisions and steering off-lane.
Furthermore, autonomous vehicles can make mobility available to a wider range of people such
as the elderly, disabled individuals, and those without a driver's license. Autonomous vehicles
can also increase productivity in people’s lives as individuals can easily focus on important and
urgent tasks, such as attending a virtual meeting or finishing an email since there is no driver,
everyone is a passenger. Although some of these capabilities, such as fully autonomous
operation, are already possible in limited contexts (e.g., Waymo's driverless cars in Phoenix)1,
ongoing improvements aim to enhance their reliability and scalability, allowing for these
imaginations to become a reality in the near future. In autonomous driving, object detection is a
key factor in ensuring safety, as it enables vehicles to identify and respond to pedestrians,
vehicles on the road, and other obstacles. This paper sets out to dig deep into the trends in
learning-driven object detection methods, specifically looking at how they are used in self-driving
systems. Innovations in learning have brought about a variety of object detection techniques like
YOLO (You Only Look Once)[1], SSD (Single Shot Detector) [2], and Faster R-CNN (Faster
Region based Convolutional Neural Networks) [3]. These methods have showcased precision
and the ability to process data in real-time effectively for applications such as autonomous
driving.

1 https://waymo.com
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II. YOLO Algorithm Overview

[26] Figure 1: The head, neck, and backbone make up the three primary parts of the YOLOv8
architecture. The backbone is responsible for extracting essential features from the input image
using convolutional layers and C2f blocks that process image information at multiple scales,
enabling effective feature representation. The neck performs multi-scale feature fusion,
combining spatial and semantic information from different layers of the backbone. This is
achieved through operations like upsampling and concatenation, ensuring that the model
captures details critical for detecting objects of varying sizes. Finally, the head predicts bounding
boxes, class probabilities, and confidence scores by processing the fused features. This
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involves calculating anchor-free detection outputs that prioritize real-time performance and high
precision. The entire architecture is designed for efficient object detection while balancing speed
and accuracy for applications like autonomous driving.

YOLO stands for "You Only Look Once," a well-known algorithm used for detecting
objects in real-time that has found extensive use in different fields like self-driving cars. It is
praised for its processing and precise detection abilities, making it a top pick for real-time object
identification tasks. YOLO is primarily described as a one-stage object detection framework that
combines a Convolutional Neural Network (CNN) for feature extraction with real-time detection
capabilities. After the YOLO framework is fed an input image into a CNN for feature extraction,
the image is divided into an S × S grid, where each grid cell predicts bounding boxes, class
probabilities, and a confidence score for objects present in the cell. Finally, non-maximum
suppression ensures that overlapping bounding boxes are consolidated by selecting the one
with the highest confidence score, thereby reducing duplicate detections [22]. The YOLO
architecture, as illustrated in Figure 1, is designed to be efficient in object detection. The
modular design reduces redundancy through a combination of convolutional, downsampling,
and upsampling layers, followed by detection layers that can predict bounding boxes, class
probabilities, and confidence scores [24]. Thus, YOLO can conduct high-speed inferences to
detect in real-time. YOLO is a one-stage detector, meaning predictions are made in a single
pass. Many other algorithms, such as Faster R-CNN, use two-stage detection, making them
slower. YOLO has many uses other than object detection for driverless cars. It has been used
for healthcare [27], agriculture [28], and even security surveillance [29]. Nevertheless, YOLO
does face challenges in detecting small objects and understanding the context around them [4].
In these cases, there may be other algorithms that can be more useful, as shown in what
follows.

II.A Comparing YOLO and SSD for Real-Time Object Detection

[30] Figure 2: The SSD architecture based on the VGG16 backbone (left), followed by extra
convolutional layers (middle), leverages predefined anchor boxes of varying scales and aspect
ratios for object detection across multiple feature layers. This design enables SSD to detect
objects of different sizes but introduces added computational complexity compared to YOLO’s
simpler, grid-based architecture.

The architectures of SSD and YOLO neural networks consist of noticeable differences.
SSD’s architecture is built on the VGG (Visual Geometry Group) convolutional neural network,
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which uses predefined anchor boxes at different scales and aspect ratios for object detection
across multiple feature layers as seen in Figure 2 [20]. On the contrary, YOLO utilizes the
Darknet convolutional neural network, a lightweight and efficient architecture that divides the
input image into a grid. Each grid cell predicts bounding box coordinates, class probabilities, and
confidence scores simultaneously, combining them into a unified output [21]. These distinctions
between the two algorithms convey that YOLO is more suitable than SSD for real-time detection
when it comes to autonomous driving. SSD’s use of multiple feature layers increases its
capacity to detect objects at varying sizes but comes at the cost of added computational
complexity, leading to slower processing times. YOLO’s single-stage design allows predictions
to be made in one pass, significantly reducing latency and making it more efficient for
time-sensitive applications like autonomous driving [22]. SSD is more suitable for applications
that require higher accuracy for objects of unusual sizes while YOLO is preferred in
time-sensitive conditions.

II.B Efficacy of YOLO vs. SSD
The COCO (Common Objects in Context) vehicle dataset, a subset of the COCO

dataset, is commonly used to analyze the results in object detection for these algorithms. The
COCO-vehicles dataset is focused on object detection in vehicles as it contains over 80,000
images of vehicles. It consists of many different vehicle categories: cars, trucks, buses, trains,
motorcycles, bicycles, boats, airplanes, and ships [14]. The COCO dataset contains images of
vehicles in diverse driving conditions, such as severe weather conditions, peculiar vehicle sizes,
and confusing surroundings, leading to improved performance when deploying trained models in
the real world.

The COCO-vehicle dataset will be used to compare the different versions of the YOLO
models. YOLO models come in many different variants: YOLOv8-N(Nano), YOLOv8-S(Small),
YOLOv8-M(Medium), and YOLOv8-L(Large). mAP50, which stands for Mean Average Precision
at 50% IoU (Intersection over Union) threshold, is a common metric to measure the accuracy of
each model's object detection capabilities when it comes to classifying objects. mAP50 is used
to measure the accuracy of algorithms that are designed to classify objects. YOLOv8-N has the
smallest size at about 2.5MB and has the fastest inference speed at 10ms, however, it has the
lowest accuracy at mAP50: 88.2% on COCO’s vehicles dataset [10]. YOLOv8-S has a slightly
larger size at 12MB and a slightly higher inference speed at 30ms, but its accuracy is slightly
better at mAP50: 92.5% on COCO’s vehicles dataset [11]. This trend of increase in size,
inference speed, and accuracy rate continues as you go closer to the large model(YOLOv8-L),
which has a size of 120MB, inference speed of 80ms, and an accuracy rate of mAP50: 96.8%
on COCO’s vehicles dataset [12,13].

The SSD model has a 92.5% (mAP50) accuracy rate while using the COCO dataset, can
detect small objects with ease, and can easily adapt to different object scales and different
aspect ratios [8]. However, SSD can only detect up to 30 FPS (frames per second), which is
much slower than YOLO which can detect up to 100 FPS, allowing for more accurate real-time
detection. In addition, SSD has a more complex architecture than YOLO, which is has an
extremely simple and efficient architecture. YOLO also has a higher accuracy rate when using
the COCO dataset at 95.5%(mAP50) [9]. While SSD's multi-layer feature extraction allows it to
adapt to unusual situations (e.g., construction sites, complicated road layouts) and detect small
objects (e.g., motorcyclists), YOLO thrives in scenarios where speed and reaction time are
prioritized [8]. Both YOLO and SSD are excellent for object detection in their own ways. When it
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comes to real-time scenarios that require a quick reaction time, YOLO is more suitable because
of its ability to evaluate at a staggering 100 FPS whereas SSD is only able to detect up to 30
FPS, which is significantly slower [7]. In driving, having a fast reaction time is one of the most
important characteristics that a driver needs. For instance, if a car on the highway suddenly
slams the brakes, the driver of the vehicle that is following behind needs to react right away to
come to a stop or slow down before hitting any objects. So, YOLO would have a higher chance
of crash prevention in most cases due to its faster speed, making it a better option than SSD.

II.C Object Detection with LiDAR

[19] Figure 3: An optical image taken by the Velodyne2 LiDAR VLS-128.

Another popular alternative for YOLO is LiDAR (Light Detection and Ranging). The YOLO
algorithm can be applied through the use of ordinary cameras, but LiDAR is much different.
LiDAR works by emitting laser pulses that reflect off objects in the surrounding environment.
The system measures the time it takes for the laser pulses to return, calculates the distance to
each object, and generates a highly detailed 3D map of the surroundings known as a point
cloud. As seen in Figure 3, LiDAR’s ability to generate 3D point cloud data allows it to capture
detailed spatial relationships in a scene with precise measurements [15]. So, LiDAR measures
using exact distances, so there are extremely few chances of errors in measurements of
distances. While being much more accurate than YOLO, LiDAR is much more costly than
YOLO. The sensors required for LiDAR systems are much more expensive than the ordinary
cameras used by YOLO. For example, a basic LiDAR sensor can cost thousands of dollars,
whereas cameras used for YOLO-based vision systems are available for a fraction of that price

2 https://www.velodyneacoustics.com/en/
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[15]. One noteworthy case of opposition against LiDAR comes from a big player in the
autonomous vehicles world, Tesla Motors. Tesla has opted not to use LiDAR in its self-driving
systems, citing its high cost and the complexity of maintaining up-to-date mapping systems.
Instead, Tesla relies on vision-based approaches, which mimic the way human drivers process
their surroundings. While this perspective, advocated by CEO Elon Musk, is influential, it is not
universally accepted in the autonomous driving community; instead, the main focus should be
the vision as drivers also drive based on their surroundings [17]. In other words, drivers do not
have all the roads around the globe memorized. The reasoning behind why YOLO is much
cheaper than LiDAR is simply because YOLO uses driver point-of-view camera data and
doesn’t require any expensive sensors other than ordinary cameras [18]. However, if there were
no constraints on budget and the main focus was reaching the most accurate measurements
and detection of objects, sensor fusion could be implemented by merging LiDAR and cameras
as it would make scene understanding significantly easier. Alternative algorithms like SSD and
Faster R-CNN have demonstrated capabilities in specific areas, like detecting small objects and
understanding context better but can sometimes lead to slower processing speeds as a trade-off
[5].

III. Case Study
In this section, we outline the process of training a YOLO model to detect various types of

vehicles on the road. First, the creation of a custom dataset with over 700 images, each
annotated with bounding boxes for precise object localization, is described. Next, the dataset is
used to train the YOLO model, refining its ability to recognize vehicles in both urban and rural
settings. Finally, the performance of the trained model is demonstrated in real-world scenarios,
highlighting its capabilities in object detection and tracking across diverse road environments.

III.A Dataset

Figure 4: Batches of frames throughout the training of the YOLOv8 Model.
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The custom dataset was created using Roboflow3, a tool designed to streamline the
process of building datasets for object detection. From YouTube videos, over three hours of
dashcam footage was collected and uploaded into Roboflow, where each video was converted
into individual frames. On each frame, bounding boxes were manually drawn, using Roboflow’s
labeling feature, around vehicles based on their appropriate category: cars, buses, and trucks.
As seen in Figure 4, in frames with multiple vehicles this process involved adding bounding
boxes for each vehicle within a single frame, ensuring that all objects were accurately labeled.

Figure 5: Accuracy in mAP50 using old dataset (left side graph) and new dataset (right side
graph)

Initially, the first dataset consisted solely of footage from rural areas, with flat landscapes
and minimal variation in scenery. When the model trained on this dataset was tested on city
footage, its predictions were inaccurate with a mAP50 of less than 70%, as the urban
surroundings introduced more complex and unfamiliar patterns. This outcome highlights a
critical limitation: training a model on a dataset with uniform scenery can lead to poor
generalization when tested on more diverse environments. To address this, a second, more
diverse dataset was created by using video clips from YouTube to include dashcam footage
featuring a variety of environments, ranging from deserts to busy cities. As seen in Figure 5, this
expanded dataset significantly improved the model’s accuracy in mAP50 to over 90% by
exposing it to a wider range of scenarios, reducing confusion in its predictions. Figure 4
illustrates examples of bounding boxes from the dataset, showing how vehicles were annotated
across different environments to enhance the model’s ability to detect objects in diverse
surroundings.

3 https://roboflow.com/
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III.B YOLO Model

Figure 6: The pyramid of images approach (Left) resizes input images at multiple scales for
prediction while the pyramid of feature maps approach (Right) efficiently uses extracted features
at different layers for object detection. [23].

The YOLOv8 model architecture used here is from Ultralytics4, a framework designed for
high-performance object detection. YOLO is built on three main components: the Backbone,
Neck, and Head. The Backbone, an adapted version of the Darknet5 architecture is responsible
for extracting key features from the images through several convolutional layers that
downsample the input, allowing the model to pick up patterns at different scales. The Neck acts
as a bridge between the Backbone and the Head, using feature pyramid layers, which are used
to help detection of objects of various scales as shown in Figure 6, to enhance spatial
information and ensure the model can detect objects of varying sizes. Finally, the Head
generates the output by predicting bounding boxes and class probabilities for each detected
object. To train this model, a custom dataset was created, and Python code was implemented to
train the YOLOv8 model from scratch. The training was set to run for 50 epochs, with a batch
size of 8 and an image resolution of 640 pixels.

5 https://github.com/pjreddie/darknet
4 https://www.ultralytics.com/
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III.C Results (Plots)

Figure 7: Results of the YOLOv8 model that we trained in 50 epochs.

Figure 7 showcases key metrics and loss trends from training a YOLO model for vehicle
detection across 50 epochs. The plots reveal a steady improvement in the model's accuracy
and precision, with training and validation loss for bounding boxes decreasing as the model
becomes more precise in bounding box placement. Classification and DFL (Distribution Focal
Loss) losses both drop, indicating the model’s growing confidence in object classification and
localization. Precision and recall metrics rise, showing the model's ability to detect more objects
accurately while minimizing false positives and negatives. The mAP50 jumps from under 20% to
about 90%, reflecting rapid learning, and the mAP50-95, Mean Average Precision averaged
over IoU thresholds from 50% to 95% (at 5% steps), further demonstrates the model's
adaptability to diverse object shapes. This impressive accuracy was achieved in roughly three
hours on an NVIDIA RTX 3070, emphasizing YOLO's suitability for real-time object detection
tasks where quick and accurate responses are essential. The results highlight YOLO’s strength
in performing precise object detection and tracking, making it highly effective for applications
that demand on-the-spot decision-making.

Conclusion
We explored the advancements of object detection algorithms in autonomous vehicles by

examining their key methods, strengths, limitations, and practical applications. After
emphasizing the potential of driverless cars in the future and the critical role object detection
plays in achieving the visions of driverless cars, we compared YOLO to its alternatives such as
SSD and LiDAR, discussing their strengths and weaknesses. Our case study demonstrated the
training process of a YOLO model using custom datasets, highlighting the importance of diverse
environments in enhancing detection accuracy. The results showed YOLO’s strong performance
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metrics, confirming YOLO’s sustainability for real-time applications. Ultimately, this exploration
underscores that while YOLO excels in speed and efficiency, the choice of algorithm should
align with the specific demands of the application. Our research reaffirms the importance of
continual innovation in object detection as a foundation for advancing autonomous vehicle
technology and improving transportation safety.

Despite making strides in the field of object detection and trajectory prediction algorithms
there is still potential for enhancement. Future research avenues could involve delving into
designs to enhance contextual understanding. This would involve developing algorithms
capable of detecting objects with ease, even when faced with odd or cluttered backgrounds. For
instance, graph neural networks can be utilized to easily interpret the relationships between
objects in a scene, improving the ability to deal with complex environments. Another approach
to consider is incorporating a variety of sensors, such as cameras, radar, and audio, into
sensor-agnostic architectures. Separating visual and audio data before combining them could
make the model more adaptable and precise in difficult situations, such as detecting vehicles in
heavy fog or hearing sirens in noisy environments. Of course, having more data will not always
lead to better results as at a certain point the results will stop improving. However, the results
can still improve to an extent. Beyond a certain point, architecture and algorithmic improvement
will become necessary to see noticeable progress in performance. The contextual
understanding of algorithms can be drastically improved by enabling them to detect objects with
ease despite having odd backgrounds and surroundings through the use of graph neural
networks. Models can be made more robust through adversarial training. Models can be trained
so that the loss function is minimized while simultaneously handling confusing scenarios,
specifically distorted images or unusual object placements. Furthermore, the implementation of
an active learning model would be highly beneficial because it would allow the model to learn
from errors by itself similar to how humans use their mistakes to learn to do actions to prevent
those mistakes in the future. The creation of such algorithms can allow self-driving vehicles to
behave similarly to humans, which is crucial in making them safer because, at the moment,
human judgment is much better.
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