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Abstract:

MRI scans of dementia patients were analyzed to identify commonalities and differences in
specific areas when compared to non-demented patients. Using Python, average images of the
brain scans for both groups were created, and the differences were plotted to visually highlight
regions of significant variation. This approach identified critical areas affected by dementia, such
as the hippocampus and ventricles, which display distinct patterns of atrophy and enlargement,
consistent with previous studies. By generating these comparative images, this analysis aimed
to enhance understanding of how dementia structurally impacts the brain, providing a visual
representation that can aid in more accurate diagnosis and assessment of the disease's
progression. These visual insights contribute to the broader goal of utilizing computational
methods to pinpoint early indicators of dementia, offering potential pathways for future AI
models to further refine the detection and prediction of this condition.

Introduction:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the
elderly, leading to cognitive decline and memory loss[1]. It is the most common cause of
dementia, accounting for an estimated 60-80% of cases worldwide [1]. The diagnosis of
Alzheimer's disease often occurs at a later stage of the disease progression when significant
brain damage has already occurred, making treatment and intervention less effective [2].

Current diagnostic methods for Alzheimer's disease include clinical evaluations, cognitive
testing, neuroimaging, and biomarker analysis from cerebrospinal fluid (CSF) and blood
samples [3,4,5]. While these methods are helpful, they each have notable limitations. Clinical
evaluations and cognitive testing are inherently subjective, with outcomes often dependent on
the clinician’s expertise. Furthermore, these methods are less effective at detecting early-stage
Alzheimer’s when symptoms are mild [3]. Neuroimaging techniques, such as magnetic
resonance imaging (MRI) and positron emission tomography (PET) scans, can identify brain
changes linked to Alzheimer's, but they are costly, not widely accessible, and may only be
helpful to detect late-stage dementia [4]. Biomarker analysis from CSF and blood samples, while
promising, can be invasive and is not always conclusive in providing a definitive diagnosis [5].
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The early detection of Alzheimer's disease is essential for several reasons. Early intervention
has been shown to slow disease progression, improving patients’ quality of life [6]. Identifying
Alzheimer’s in its initial stages also allows patients and their families to plan for the future, seek
support, and make informed decisions regarding long-term care [7]. Additionally, the
identification of early-stage patients is critical for advancing research and development, as these
patients can participate in clinical trials that test new treatments and therapies [8].

The primary objective of this project is to analyze patterns in MRI scans of patients with and
without dementia and to understand patterns in patients with dementia.

Literature Review:

Neuroanatomical differences between dementia patients and those without dementia are
well-documented in the literature, primarily in relation to brain structure [3]. These structural
changes are critical for understanding the progression of dementia and for improving diagnostic
accuracy through imaging techniques like MRI. One of the most affected regions is the
hippocampus, a key area for memory formation, which is often among the first regions impacted
in dementia, particularly in Alzheimer's disease [3]. Studies consistently show significant atrophy
in the hippocampus and surrounding medial temporal lobe structures in patients with dementia
compared to healthy individuals [1,2]. This atrophy correlates closely with the degree of
cognitive impairment, as more advanced stages of dementia are associated with more severe
hippocampal shrinkage [3].

Beyond hippocampal atrophy, other brain regions such as the entorhinal cortex, amygdala, and
parietal lobes, also exhibit varying degrees of shrinkage in dementia patients. These structural
changes contribute directly to hallmark symptoms of dementia, including memory loss,
disorientation, and difficulties with spatial awareness and navigation [1]. Additionally, white
matter lesions and a general reduction in brain volume have been reported in patients with
dementia, further distinguishing them from non-dementia individuals and providing additional
markers for disease progression [5].

Understanding these neuroanatomical differences is crucial for interpreting MRI scans within the
context of dementia diagnosis. The identification of specific patterns of brain atrophy and other
structural changes allows for more precise differentiation between types of dementia, as well as
for tracking the progression of the disease over time [12].
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In analyzing the MRI images of dementia and non-dementia patients across sagittal, transverse,
and coronal views, distinct neuroanatomical differences that highlight the impact of dementia on
the brain. The coronal view consistently revealed pronounced atrophy in dementia patients,
particularly in the hippocampus and surrounding medial temporal lobes—regions critical for
memory formation and cognitive function. This atrophy is coupled by significantly enlarged
ventricles, a common occurrence in many forms of dementia that reflects the substantial loss of
brain tissue in adjacent areas. The enlargement of the ventricles is most evident in the
transverse and coronal views, where the increased size results in wider spaces filled with
cerebrospinal fluid, visible as darkened regions around the ventricles. These changes are stark
when compared to the brains of non-dementia patients, which show smaller ventricular spaces
and well-preserved cortical thickness, indicating healthier brain structures. The visible
degeneration and tissue loss underscore how dementia affects critical brain regions and
contributes to the cognitive decline characteristic of the disease. These MRI differences provide
crucial insights into the neurodegenerative processes underlying dementia, illustrating the
profound structural impact of the condition and reinforcing the importance of advanced imaging
techniques in early diagnosis, monitoring, and understanding the progression of dementia.

Methods and Results:

MRI and clinical patient data were obtained from the Oasis 1 dataset [12]. Data for subjects 22,
24, 26, 29, 34, 28, 30, 33, 35, and 39 were used. Subjects with a dementia score ≥1 were
classified as dementia patients, while all others were classified as non-dementia patients.
Images of both non-dementia and dementia patients were plotted to compare differences that
could indicate affected areas of the brain. The MRI scans were averaged for each view for both
non-dementia and dementia patients. Subsequently, the average dementia images were
subtracted from the average non-dementia images to create an average image from each
category from three different perspectives.

A caveat in this analysis is that the images for dementia and non-dementia patients were not
perfectly aligned, leading to conflicting skull outlines, which made the average images blurry and
the analysis harder to interpret. It is important to note that raw data were used to create the
average images; using processed data would have simplified and improved the accuracy of this
process. Specific tools, such as FreeSurfer software, would have enabled better alignment of
the images, resulting in a clearer analysis.
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Discussion:

The next step of this project would be to develop an Artificial Neural Network (ANN) specifically
to detect dementia. This would involve expanding the dataset to include more diverse MRI
scans and patient information. An ANN would be created by adding layers, like convolutional
layers, which are great for image analysis. Techniques, such as backpropagation, would be
used to fine-tune its accuracy. Additionally, including clinical data along with MRI images could
help the model make more precise predictions, aiding in earlier and more reliable dementia
diagnoses.

To detect dementia, the ANN processes input data such as MRI scans and medical history
through multiple layers of neurons. Each layer extracts and transforms features from the data,
progressively refining the model’s understanding. The final output layer provides a decision or
classification based on the transformed features, indicating whether the patient shows signs of
dementia.

The primary data used in an ANN project includes MRI scans of patients' brains [12], as well as
supplementary medical history information [13]. This includes age, dominant hand, education
level, and socioeconomic status. These diverse data sources provide a comprehensive view,
enabling the ANN to learn from both visual and non-visual patterns associated with dementia [8]

Effective data preprocessing is crucial for training robust neural networks. Cleaning the data
involves removing irrelevant or noisy information, handling missing values, and addressing
outliers. Normalizing the data ensures that each feature contributes equally to the model,
preventing any single feature from disproportionately influencing the results [10].

Missing data can be handled through techniques such as imputation, where missing values are
replaced with estimated ones based on the remaining data. Outliers, which are data points
significantly different from others, can be identified and either removed or transformed to
minimize their impact on the model [9].

To maintain consistency and improve model performance, all images are resized to a standard
dimension of 224 by 224 pixels. This uniform size ensures that the ANN processes each image
in the same way, facilitating efficient learning. Normalizing the images also involves scaling pixel
values to a standard range, typically between 0 and 1, which helps in stabilizing the training
process and speeding up convergence [10].
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By resizing the images to 224 by 224 pixels, we established a consistent input format, ensuring
that our ANN can effectively learn from the data and accurately detect signs of dementia [10].

Figure 1: Panels a-f are MRI’s scans obtained from Oasis 1 [12]
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