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Abstract

The primary (M1) motor cortex is a highly conserved part of the mammalian brain, responsible
for the direct control of voluntary muscles. While it is known that different species have
differently structured motor cortices due to their unique needs and evolution, there is little
knowledge on the cross-species differences between motor cortex cell types at the molecular
level, and no comparison of humans with our closest living relatives, chimpanzees. A
cross-species molecular level understanding of the M1 cortex would reveal the development of
specific cell types and genes in line with evolutionary progression in motor skills. Using single
nucleus RNA sequencing(snRNA-seq) on samples gathered from humans, rats, and
chimpanzees, this research identified over 50 excitatory neuron cell types in three species,
differences in (celltype/subclass proportions, marker genes, and some potentially unidentified
cell types) These results point to the existence of Layer 4-like excitatory neurons in primates.
In addition, human specific cell types were rich in genes in pathways implicated in ADHD and
autism.

Introduction

First mapped in 1874, the motor cortex has since been the subject of continuous study. Today,
it is known that the motor cortex can be divided into the primary motor cortex(M1), premotor
cortex, and supplementary motor cortex. Responsible for controlling voluntary movement, the
human M1 cortex is organized topographically; each body part has a corresponding location
on the M1 cortex, while also being composed of six vertical layers of neurons. Recent
advances in brain mapping technology have unveiled portions of neuron circuits in the human
M1 cortex responsible for coordinating complex muscle movements like speech and running.

However, a new technology called Single Nucleus RNA Sequencing (snRNA-seq), is
revolutionizing tissue mapping by giving precise RNA reads of hundreds of thousands of single
cells in a tissue sample. This provides data that can be used to identify unique cell types by
gene expression. Given spatial data, snRNA-seq can generate a map of cell types over the
tissue, providing a higher resolution of organ structure and gene expression than possible with
previous techniques.

By applying snRNA-seq to human M1 cortices, and our closest relatives; chimpanzees, this
paper addresses a gap in knowledge between the cell types and gene expression of human

1



and chimpanzee M1 cortices. The overall genetic sequence identity between human and
chimpanzee is 98.77%.(Sakate et al., 2003) If comparing the coding DNA, the similarity is
99%, meaning the genetic code is nearly identical. Focusing on the pinpoint differences and
their implications on cell function will help identify uniquely human genetic features and
diseases.

This analysis focused on excitatory neurons and identified over 50 excitatory(exc), or
glutamatergic(glut) cell types across humans, chimpanzees, and rats. There were also
significant differences in the proportions of excitatory cells, with the rat sample being
approximately 75% excitatory, chimp being 65%, and human being about 65% as well.
Furthermore, as excitatory neurons move up the vertical layers of the motor cortex, they
become less conserved across species. For example, a chimpanzee layer 2(L2) neuron
shares more marker genes with a human L2 neuron than a chimpanzee layer six neuron(L6)
with a human L6. This pattern is not observed in inhibitory neurons, which remain overall much
more tightly conserved across all species.

Much of the analysis of primate excitatory neurons in this study points to the potential
existence of layer 4-like(L4-like) excitatory neurons in primates. L4 neurons are known to be
found in rats, but are predominantly believed not to exist in primates.(Shipp et al., 2013)
However, recent studies have identified visual evidence of unique cell type combinations in the
region between L3 and L5 in mammals.(Yamawaki et al., 2014) Analysis of primate excitatory
neurons in this study found clusters of neurons that shared marker genes with both L3 and L5
cells, and clustering algorithms often struggled to split these clusters. In addition, Cellchat and
gene ontology analysis of differentially expressed genes within these clusters revealed unique
cell communication pathways and patterns within this cluster. In rodents, L4 cells communicate
directly with the thalamus; a unique communication pathway compared to other M1 excitatory
neuron layers.(Bopp et al., 2017) Based on the communication pathway distinctness and
transcriptomic similarity to L3 and L5, these cells appear to point towards further evidence of
existence of L4-like cells within primates.

Additionally, gene ontology analysis of human-specific cell types revealed the presence of
pathways associated with autism and ADHD. Both autism and ADHD appear to be largely
human-specific phenomena, although similar behavior patterns manifest in other
animals.(Patterson, 2011)
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Results

Conserved transcriptomic cells cross specie

From the data collected from BICCN and (human marmoset mouse), more than 235,000 cells
passed quality control with a roughly equal number of cells from each species (Table 1). In the
collection process the cells were enriched for neurons, resulting in more than 90% of the
population being neurons. Cells were labeled by known markers of three broad classes,
GABAergic, Glutamatergic, and Non-neuronal. After finding cell clusters with the markers
GAD1 for GABAergic, and SATB2, SV2B, and SLC17A7 for glutamatergic cells, the resulting
clusters showed more than twice the number of glutamatergic cells than GABAergic cells
across all species, with the specific ratios: humans ( 67% vs. 33% ) to chimpanzees (72% vs.
28%) and rats (83% vs. 17%) (Figure 1(a)). Non-neuronal cells have the lowest number of
genes detected, on average about 2000 genes per cell for all three species. Glutamatergic
cells have the greatest number of genes detected, ranging from 4000 to 6500 genes per cell,
with rats having the least genes per cell while humans have the greatest. Overall, humans
have more genes detected in all three classes, and chimpanzees and rats have a similar
number of average genes detected in GABAergic and non-neuronal classes, but chimpanzees
have more genes detected in glutamatergic cells than rats, with about 1000 more genes
(Figure 1(b)).

human chimpanzee rat
GABAergic 23992 21987 11512

Glutamatergic 48536 56322 56195
Non-neuronal 4005 7413 5396

Table 1. Number of nuclei included in the analysis.

For each class, unsupervised clustering of the snRNA-seq data identified
subclasses(mentioned in the method section) (Figure 2a-2c). Every subclass contains cells
from each donor. Cells of the same classes were grouped together by the transcriptional
profile across species (Figure 2d). Non-neuronal markers are not as consistent as neuronal
cells between rats and the others (humans and chimpanzees). Consistent with previously
identified (citation), GABAergic cells can be grouped into two sets: Pvalb, Sst, and Sst Chold
express ADARB2, and Vip, Lamp5, and Sncg express LHX6. While the proportion of cells
expressing Lhx6 in rats is relatively low, no consensus marker was identified for non-neuronal
cells of all three species. NCKAP5 marks OPC, Astrocytes, and Oligo cells for both human and
chimpanzees. MBP and SLC1A3 together marks all non-neuronal cells except Endo/peri cells
in humans. The proportion of GABAergic subclasses between humans and chimpanzees are
similar, except Vip.(Figure 3(a)). Chimpanzees have significantly more Vip cells than both
humans and rats. Rats have significantly more Pvalb cells but less Lamp5 cells than humans
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and chimpanzees. Glutamatergic cell subclass compositions tend to be more variable between
species than GABAergic cells. Superficial layer (layer two and three) excitatory neurons are
dominant among the detected glutamatergic neurons, >35% in both human and chimpanzees,
but not rats. (Figure 3(b). On the other hand, L6 corticothalamic cells and L5
extra-telencephalic cells in primates are much more rare than in rats. Humans have more
non-IT (intra-telencephalic) cells than chimpanzees overall, mostly L6 corticothalamic cells and
L6b cells. Unlike GABAergic neurons which have similar compositions across species,
compositional variation within Glutamatergic neurons is much greater.

Integrated GABAergic and Glutamatergic cells across three species separately reveal the
transcriptomic conservedness and diversity of subclasses. Six GABAergic subclasses with well
mixed cells across species were detected (Figure 4a). Human and chimpanzee data has far
more overlap with each other than with rat data (Figure 4b). Comparing GABAergic and
Glutamatergic neurons by clustering integrated cells using subclass labels revealed
bio-conservedness of subclasses. Four clustering comparison metrics were calculated,
normalized mutual information (NMI), adjusted rand index (ARI), silhouette width, and isolated
label (Table 2). With all metrics taken into account, GABAergic cells are more conserved than
Glutamatergic cells between both mammals and primates.
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Glutamatergic neuron conserveness and diversity

Markers of glutamatergic cells are well conserved across species (Figure 5a (dotplot of
markers)). CUX2 is distinguishably highly expressed in more than 80% of L2/3 IT and L3/5 IT
cells of all three species. The clusters that over-express RORB (known L4 marker in the
mouse M1) and under express L2/3 IT and L5 IT markers are annotated as L3/5 IT, potentially
containing L4 IT neurons. High CUX2 expression combined with low expression of RORB can
distinguish L2/3 IT cells from L3/5 IT cells. Both L3/5 IT cells and L5 IT cells express high
levels of RORB in >80% of cells, but L3/5 IT are differentiated from L5 IT cells, by L3/5’s low
expression of IL1RAPL2. In categorizing L6 neurons, the presence of high ADAMTS3 and
THEMIS are markers of L6 IT and L6 IT Car3 cells in humans and chimpanzees. L6 IT Car3
cells are differentiated from L6 IT cells by their high expression of HS3ST4. Finally, there is a
large difference in marker genes for L6b, as MDFIC and SEMA3D together are markers for
primate L6b cells, whereas the rat L6b marker is CCN2. In differentiating layer five
glutamatergic cells, L5 ET cells are distinguished by high expression of both TAFA1 and
BCL11B. TSHZ2 and NXPH (neurexophilin family) mark L5 NP cells, although there is slight
variation in species as rats express NXPH1 while primates express NXPH2. Surprisingly,
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FEZF2, a previously identified marker for L5 neurons, was not uniquely expressed in any cell
subclass. FOXP2 is known to be down-expressed in non IT cells in mice, also expressed in
human and chimpanzee L5 IT cells.

The end result was nine glutamatergic subclasses in primates and eight subclasses in rats
(Figure 6a). The new subclass L3/5 IT was separated from L2/3 IT and L5 IT cells and
highlighted orange. It is composed of cells originally grouped into L2/3 IT and L5 IT.

Mammals Primates

GABAergic Glutamatergic GABAergic Glutamatergic

NMI 0.76 0.68 0.85 0.83

ARI 0.61 0.47 0.62 0.41

Silhouette width 0.64 0.65 0.63 0.67

Isolated label 0.8 0.74 0.71 0.86

Average 0.703 0.635 0.755 0.64
Table 2. Bio-conserveness of GABAergic and Glutamatergic neurons between mammals and

primates.
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Each subclass had a different number of conserved marker genes between species, ranging
from eight to 57 markers. Far more conserved markers (>27%) were detected between
humans and chimpanzees than between either primate and rat in all seven subclasses (Figure
6b venn diagram). However, many markers had high expression in only one species (Figure 6c
heatmap). Non-IT cells tend to have more differentially expressed genes than IT cells (Figure
6c). To evaluate the magnitude of difference in gene expression patterns between primates,
five distance metrics, spearman distance, mean absolute error, euclidean distance, mean
squared error, and Pearson distance were calculated between the centroids of human
subclasses and chimpanzee subclasses. L6 corticothalamic cells have the lowest overall
distance, followed by L5/6 near projecting cells, and L6b cells. Among the intra telencephalic
cells, L3/5 IT and L6 IT have the lowest distance and are followed by L5 IT and L2/3 IT. L2/3 IT
and L6 IT Car3 cells have the largest distance overall between species. Besides this broad
trend, conservedness varies more between cell subclasses than physical locations (layers)
(Figure 6e distance matrix).

35 cell types were detected in chimpanzees with higher resolution clustering, and mostly
aligned with previously annotated (citation) 44 human cell types (Figure 6d dendrogram).
Hierarchical clustering of the cell types illustrated this alignment as cell types under the same
subclass clustered tightly together regardless of species. However, the number of cell types
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detected within each subclass varies between humans and chimpanzees. The small clusters
under a subclass tree, formed by single species cells indicate species specific cell types
(Figure 4 dendrogram).

Layer four neurons

Further high resolution unsupervised clustering was applied to intratelencephalic cells from the
integrated snRNA-seq data to identify potential L4 IT cells. Clusters were labeled with the
expression pattern of known markers from rodents. Rat L4 cells cluster out cleanly so clusters
with an over-expression of layer four marker (RORB) were separated and annotated as L4 IT
cells. However, there was less clear separation of human and chimpanzee potential L4 IT cells
from L2/3 IT and L5 IT cells. Therefore, the clusters that express both RORB and L3 markers
were designated as L3/4 IT cells, as most of L2/3 IT did not express RORB(Fig.4.3 a), and
those that expressed RORB and L5 markers were designated as L4/L5 IT cells. It is known
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that RORB is expressed in the bottom of layer three and upper part of layer five.(Goralski et
al., 2024) Any potential L4 IT cells should be contained in the L3/4 IT and L4/5 IT clusters.

The separation of L4 IT like cells (consisting of the primate exclusive L3/4 IT and L4/5 IT cells)
from L2/3 IT and L5 IT was evaluated using centroid distance. The centroid distance in the
space of principal components one and two shows a clear separation, where the L4 like
centroid is essentially right between the L2/3 and L5 centroids. The blurring of subclasses also
indicates that cell types often cross between layer three to layer five, appearing in all those
layers.

L2/3 IT, L3/4 IT, and L4 IT cells have high expression of CUX2, with strong presence in > 80%
of the population. L4 IT had the strongest expression of RORB and L3/4 IT had the lowest
expression level(Figure 7.1). L3/4 IT and L4 IT have a different expression pattern of GRM
family genes and DSCAML1 (involved in neuronal differentiation). GRM genes are associated
with the glutamatergic receptor complex. L4 IT cells, especially in rat data, have an
over-expression of GRM3, but very low expression of GRM1, GRM8, and DSCAML1, whereas
L3/4 IT cells have an over-expression of GRM1, GRM3, GRM8, and DSCAML1. L4/5 IT cells
are different as they highly express IL1RAPL2, an L5 IT marker.

The number of L4 IT like cells is less than half the number of L2/3 IT or L5 IT cells. In L4 IT like
cells, 209 DEGs were detected (Figure 5d) by pairwise differential expression analysis. There
is no overlap between these L4 like DEGs and the DEGs identified in L5 IT and L2/3 IT, while
about 40% and 24% of L4 IT DEGs overlap with L5 IT and L2/3 IT respectively. Synaptic gene
ontology analysis of these DEGs show that L4 IT like cells are more enriched in the
presynaptic component and process, while L2/3 IT highly expressed genes contribute more in
the postsynaptic component and process. L5 IT cells are equally enriched in both pre and post
synaptic processes, with less statistical significance than L2/3 IT and L4 IT like cells. A few
biological processes were identified as enriched in L4 IT cells only, like presynaptic processes
involved in chemical synaptic transmission.

Human specific glutamatergic cell types

Human specific cell types were defined using clustering on human cell type DEGs. If those
DEGs were used to get a cluster of chimpanzee cells, and that cluster included less than 40
chimpanzee cells of the same type, that cell type was determined as human specific. Four cell
types in L6b, four in L5 IT, five cell types in L6 CT, two cell types in L5 ET, and one cell type in
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L6 IT Car3, one in L2/3 IT and one in L5/6 NP were identified as human specific. Notably,
while most human specific cell types were a few hundred cells large, one L5 IT cell type and
one L2/3 IT cell type had more than 1000 cells. The bottom two plots show functional analysis
of those human specific cell types. Enriched synaptic cellular components and the biological
processes of the overexpressed genes in the human specific cell types were defined using
(Synaptic Gene Ontology). These genes are mostly enriched in presynaptic and postsynaptic
membranes, corresponding to organizational, presynaptic, and postsynaptic process functions.
Furthermore, gene ontology with a focus on genetic disease pathways revealed that DEGs
from human specific cell types had significantly higher expression of genes in pathways
associated with autism and ADHD (Figure 6d) compared to an average cell.

Discussion

Summary

This analysis focused on excitatory neurons and identified over 50 excitatory, or
glutamatergic(glut) cell types across humans, chimpanzees, and rats. There were also
significant differences in the proportions of excitatory cells, with the rat sample being
approximately 75% excitatory, chimp being 65%, and human being about 65% as well.
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Furthermore, as excitatory neurons move up the vertical layers of the motor cortex, they
become less conserved across species. Much of the analysis of primate excitatory neurons in
this study points to the potential existence of layer 4-like(L4-like) excitatory neurons in
primates. L4 neurons are known to be found in rats, but are predominantly believed not to exist
in primates. Additionally, gene ontology analysis of human-specific cell types revealed the
presence of pathways associated with autism and ADHD.

Evidence of L4-like excitatory neurons in primates

Much of the analysis of primate excitatory neurons in this study points to the potential
existence of layer 4-like(L4-like) excitatory neurons in primates. Analysis of primate excitatory
neurons in this study found clusters of neurons that shared marker genes with both L3 and L5
cells, and clustering algorithms often struggled to split these clusters. In addition, RORB, a
marker for L4 cells in rats, are overexpressed within the cells between L3 and L5. This points
to a gray zone of unclassified neurons between L3 and L5, and the presence of L4 markers
suggests some cells with similarity to L4 cells may be present within this gray zone.
Furthermore, a comparison of centroids of L3, L5, and L4-like neurons showed that the L4-like
neurons appear to be a transcriptomic mix of L3 and L5 neurons. However, the DEG analysis
of L4-like neurons shows that despite their relations to L3 and L5 neurons, L4-like cells
express a unique set of marker genes. These results suggest that the L4-like neurons appear
to be a subclass distinct from either L3 or L5, despite retaining some similarities in gene
expression. Furthermore, this unique subclass appears to have many transcriptomic
similarities with known L4 cells. Taking a look at synaptic gene ontology, the L4-like cells tend
to have more presynaptic structures as well as a couple unique presynaptic processes,
whereas L2/3 neurons are predominantly postsynaptic. This pattern fits the known function of
L4 cells, that they transmit signals from the thalamus to L2/3 in the motor cortex. In addition,
Cellchat analysis of differentially expressed genes of L4 revealed unique cell communication
pathways and patterns within this cluster. Based on the communication pathway distinctness
and transcriptomic similarity to rodent L4, as well as L3 and L5, these cells appear to point
towards further evidence of existence of L4-like cells within primates.

ADHD and Autism associated pathways in human-specific cells

Gene ontology analysis of human-specific cell types compared with shared cell types revealed
the overexpression of genes implicated in pathways associated with autism and ADHD.
Admittedly these results are preliminary and speculative, especially as the genetic causes for
autism and ADHD are not fully understood.(Anita, 2009; Genovese & Butler, 2023) In addition,
gene ontology analysis is typically very rough, and does have an element of randomness
present. If these results were to be validated, it would provide more evidence for the idea that
autism and ADHD are human specific conditions. While autism and ADHD have not been
diagnosed in animals other than humans, there are behavioral patterns with similar symptoms
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to autism in dogs.(Tiira et al., 2012) Despite observation of autism-like behaviors in these
animals, these findings suggest that those behaviors may not be genetically related to autism.

Trends in glutamatergic and GABAergic conservedness across species

The literature has established general trends in evolutionary conservedness between
glutamatergic and GABAergic neurons, as well as within the layers of glutamatergic neurons.
Firstly, it is known that across the evolution of mammals, L2 neurons grew the most, which
means that the L2 layer should be least conserved. (Vanderhaeghen & Polleux, 2023) This
study found the same results, as L2 neurons had the farthest centroid distance between
species for any glutamatergic subclass. In addition, comparing marker gene overlap, L5 and
most L6 subclasses had greater overlap between species than L2/3 giving further evidence
that L2 is less conserved than other subclasses. The second general conclusion is that
GABAergic neurons are more conserved than glutamatergic neurons, which is also supported
by pre-existing literature.(Pembroke et al., 2021) GABAergic neurons had notably higher
bioconservedness metrics than glutamatergic neurons, reinforcing the idea that they are more
conserved. Furthermore, each subclass in GABAergic neurons can be clustered using the
same marker genes for each species, whereas glutamatergic neurons require different marker
genes for some rat subclasses than primate subclasses. This also shows that the subclasses
of GABAergic neurons are more closely related across species than glutamatergic subclasses.
These trends are important to the validation of the methods used, as many are very recent
(Kharchenko, 2021), so the fact they display trends consistent with previous research is a
strong indication of the validity of the techniques.

Limitations

This study was fundamentally limited by the inability to verify results with wet lab work. The
conclusions drawn from the data analysis could not be definitively verified. In addition, the
study could not collect more data than what was already available on BICCN.

Regarding the data itself, there is a significant gap between the target species. While
chimpanzees and humans are closely related, there exists an evolutionary chasm between
those two species and rats. As a result, the results lack nuance; for certain subclasses, there
is almost nothing conserved between primates and rats. However, without more intermediate
species, it’s impossible to tell if that subclass is primate specific or not. The data also featured
fairly significant batch effects. While tools like Harmony can reduce the impact of batch effects,
on finer clustering resolutions like those used for cell classes, batch effects can still seriously
impact clustering. Without using batch effect correction, even cell class clustering was
seriously impacted, demonstrating the strength of batch effects within the data.
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Using Google Colab, there were limitations on the methods available for data processing. Due
to RAM limitations, SAMAP, which other studies found were ideal for this dataset, could not be
used.

Future work

Future studies ideally verify the patterns and hypotheses presented in this study with lab work,
or expand the scope of analysis presented here. In addition, access to spatial scRNAseq data
would allow a contextualization of the patterns found in this study with actual neuron circuits. It
could also augment the transcriptomic evidence for L4 neurons in the primate M1 cortex, by
locating the cells that express marker genes for L4 neurons. Another direction for future work
could be similar analysis presented in this research, on a greater number of species. There is
a massive evolutionary void between primates and rats, and similar analysis of a better
representation of the class Mammalia could potentially reveal a greater number of genetic
pathways as they changed throughout evolutionary history.

Finally, access to greater computational power could increase the amount of data available.
Although the roughly 250,000 cells in this study is fairly standard for the technology, there still
were several cell types that were thrown out on account of having too few cells to perform
meaningful analysis. With many more cells, some of these smaller cell types could potentially
be validated and analyzed.
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Data and Code Availability

The 10X single nucleus RNA-sequencing data for chimpanzees and rats were downloaded
from BICCN A multimodal cell census and atlas of the mammalian primary motor cortex, and
the human data is the CV3 snRNA-sequencing data previously published
https://doi.org/10.1038/s41586-021-03465-8 and also sourced from BICCN Comparative
cellular analysis of motor cortex in human, marmoset and mouse. The Brain Initiative Cell
Census Network (BICCN) catalogs reputable transcriptomic data on brain cells. Gene
annotation and genome sequences were collected from Ensembl release 111 (Rat:
https://ftp.ensembl.org/pub/release-111/gtf/rattus_norvegicus/Rattus_norvegicus.mRatBN7.2.1
11.chr.gtf.gz, Human:
https://ftp.ensembl.org/pub/release-111/gtf/homo_sapiens/Homo_sapiens.GRCh38.111.chr.gtf.
gz , and Chimpanzee (Ensembl release 111):
https://ftp.ensembl.org/pub/release-111/gtf/pan_troglodytes/Pan_troglodytes.Pan_tro_3.0.111.c
hr.gtf.gz). 10x Genomics Cell Ranger v7.2.0 was used to map the raw sequencing (fastq) files
to the corresponding genome and transcriptome, filter the low quality reads, and generate the
cell x gene read count matrix.

Materials and Methods

Quality control and preprocessing of scRNA data

Scanpy package was used to preprocess the cell by gene read matrices. (Wolf et al.,
2018)Cells which expressed more than 5% ribosomal or mitochondrial genes were removed,
as high mitochondrial or ribosomal gene counts are indicative of unhealthy or abnormal cells.
Cells which expressed below 500 (non-neuronal cells) or 1,000 (neuronal cells), or greater
than 10,000 genes were removed as well. In addition, XY chromosome genes and genes
expressed in less than three cells were removed. Suspected doublets were removed with the
Scrublet package.(Wolock et al., 2018) Clustering was used to determine doublet cutoff score
for ambiguous samples. The maximum sublet score was 0.3.

Initial clustering was conducted on the filtered cell by gene matrices. The read count of each
cell was normalized and log transformed. The top 2000 highly variable genes were selected
using seruat_v3 then scaled to unit variance and centered. Principal component analysis
(PCA) was conducted to reduce dimensions. The data was fed into the Harmony package to
remove batch effects.

Clustering

The batch corrected cell by gene matrix using the top 30 principal components was used to
generate a nearest neighbor graph and the leiden community detection algorithm was applied
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to find clusters. Each cluster was evaluated based on the quality control criteria. A cluster was
filtered if it has a high percentage of mitochondrial or ribosomal gene expression, or high
doublet score. No sample specific cluster was detected, which confirmed the batch effect
removal was effective.

Clusters were merged and categorized into three classes, GABAergic, Glutamatergic, and
non-neuronal, based on the expression level of marker genes associated with these cell
classes. There are no defined marker genes for chimpanzees and rats in the literature, so
homologous marker genes from humans and mice respectively were applied.(Bakken et al.,
2021) The assumption is that the three broad cell classes are well conserved between such
closely related species so there would be much overlap with marker genes. The human
marker genes GAD1, SLC17A7, SV2B, and ST18 were effective for clustering chimpanzee
data, and same for the mouse maker genes Gad1, Sv2b, Qki on rats. Despite this the
chimpanzee’s data retained clusters that did not show a clear expression of any above human
marker genes. A Wilcoxon test of these clusters of interest against the rest of the dataset
revealed genes that are specifically expressed in these clusters. Based on the known
expression specificity of the top genes, these clusters were grouped into one of the three
classes. After all clusters were either filtered or grouped, the distribution and the average of
the number of genes expressed in each cell class were calculated.

The same clustering procedure was applied to each cell class separately for both
chimpanzees and rats. A higher resolution on leiden yielded finer clusters. Then a hierarchical
clustering approach was applied to the leiden clusters on the selected top 50 PCs. The leiden
clusters that clustered together were grouped into cell subclasses and annotated according to
the expression of the homolog genes of published human and mouse cell subclass marker
genes. However, there were once again clusters that did not show clear expression of known
human or mouse markers.The top 20 genes selected by the Wilcoxon test of the leiden
clusters were evaluated to refine markers for chimpanzee and rat cell subclasses. After
subclasses were defined, every leiden cluster within a subclass was considered a cell type.
Unlike subclasses, cell types are not universally agreed upon, but they represent the finest
degree of separation possible with current techniques.(Bakken et al., 2021) Cell types with
less than 40 cells were ignored. Only clusters which reappeared during rounds of reclustering
at different resolutions were accepted as cell types.

Cross-species integration

To identify conserved and divergent cell subclasses and cell types across species, the
individually clustered datasets for each animal were integrated into a large matrix retaining the
cluster labels of each species. To maintain acceptable computing speed, the dataset was split
into three, where each dataset represented one cell class. The integration and clustering were
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conducted on both cell class and subclass levels. Ortholog genes were downloaded from
Ensembl 111 release).(Harrison et al., 2024) Genes with one-to-one orthologs in each pair of
the three species were selected for integration. The number of cells after QC filtering were
similar between species (~50,000 cells each). The raw counts were normalized and log
transformed using the same approach as processing each species separately. The package
Harmony was used for cross species integration on the cell class level.(Korsunsky et al., 2019)
The “seurat_v3” approach was used to select 1,500 highly variable genes from the integrated
data. After harmony correction of the top 50 principal components, the nearest neighbor graph
was generated and cells were clustered using the same leiden clustering approach
implemented in the Scanpy package with resolution 0.1. A low resolution was applied to get a
coarse clustering at the cell class level. Clusters with low quality, e.g., high mitochondrial or
ribosomal expressions were removed. The composition of three species in each leiden cluster
were calculated and identified rat and chimpanzee specific clusters and primate specific
clusters. Previously identified cell class marker genes of each species were examined and
used to annotate clusters into three cell classes. The cell proportion of each cell class in the
integration results were calculated.

GABAergic cells are very well conserved across all three species, leaving little room for
analysis, but glutamatergic cells had the most variation. The scVI and scANVI packages on the
glutamatergic cells aided studying the conserveness and divergence of glutamatergic cells
across species. scVI provided a probabilistic representation of gene expression in each cell,
while scANVI aided cell type annotation and matching cell types across species. scANVI is a
semi-supervised approach that builds up on the scVI model. The subclass annotations
obtained from clustering were used to evaluate the consistency of subclasses between
species to identify conserved and species-specific subclasses. All three species were
integrated and examined, but there was a specific focus on primate specific analysis. The label
conservation metrics, KMeans (Normalized mutual information) NMI and Adjusted Rand Index
(ARI), were used to assess the overall conservedness of clusters overlaps across species. A
leiden algorithm was applied on the nearest neighbor graph created on the scANVI derived
latent space. The three species clustering was visualized using Uniform manifold
approximation and projection (UMAP), and cluster overlaps were measured by NMI and ARI.
Many rat specific clusters were observed and clearly separated from primates, and human and
chimpanzees were mixed well. (add metric measured values, histogram of cell composition of
each cluster).

Human and chimpanzee glutamatergic cells were separated and ran through scANVI. The
cross species subclass annotation of each cluster was derived based on the subclass labels
that fit the majority of the cluster. Majority of clusters have well mixed cells from both species,
and mostly consist of cells from a single subclass ( > 90%) which indicates strong
conservation between species. Notably, a few clusters had high representation of cells from
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both L2_L3_IT and L5_IT, where each subclass represented greater than 30% of the cluster.
These clusters were annotated as the L3_L5_IT subclass, which represented cells between
the two layers, which also included L4-like cells. The UMAP of clusters were color coded by
species for visualization, and cross species subclass annotations were generated using
scANVI generated latent space representation. The composition of species subclass labels in
each cross-species subclass were visualized. All cross-species results clustering had > 98%
matching with the individual species clustering, except for the L3_L5_IT subclass. It is
composed of 27% of L5_IT cells and 72% of L2_L3_IT cells. This is due to L3_5_IT not
existing within individual species clustering, but when integrated, it clearly separated out from
other preexisting subclasses.

Differential Expression analysis for marker genes

For future categorization of cells, the defining genes for each subclass and cell type were
compiled and compared to the previous analysis on human data from (Bakken et al., 2021),
such that cell types and subclasses could be mapped consistently and compared across
species. This step was important for integration, as the human data came from a different
source than the rat and chimpanzee data. The paper it came from already clustered the raw
data into subclasses and cell types. To identify each subclass and cell type, differentially
expressed genes(DEGs) were cataloged using a one-to-all comparison. DEG analysis was
applied using the R package limmatrend_cov, which accepted raw cell by gene
matrices.(Nguyen et al., 2023) Trimmed mean of the M-values (TMM) normalization log
transformation to counts per million were used to normalize the limmatrend_cov results. The
batch information was also added to the design matrix as a confounding factor. From the
resulting DEG list, candidates were identified if the log fold change was > 1.4 and the adjusted
p-value was < 0.05.

The visualization of clusters generated from the scANVI model of primate data shows that the
conservation in glutamatergic cell types between species is not clear. To compound matters,
with the same cutoffs and procedure to find marker genes, some cell types lacked marker
genes that matched those cutoffs. Since human cell types were far more published and
annotated than the other species, those human annotations were used to classify the
chimpanzee data. However, due to the granularity of cell class level clustering, there could be
some significant gaps in this approach with species specific clusters. Extreme gradient
boosting (XGboost) is a well known supervised machine learning method, and was adapted in
cell annotations using the package devCellpy.(Galdos et al., 2022) XGboost uses a set of
gradient boosted decision trees where weights of features/genes contributed to each class
allow for automated identification of the marker genes. Furthermore, the regularized model and
sparsity aware algorithm makes XGboost resistant to overfitting and missing data to a
degree.(Saygili & OzgodeYigin, 2023)
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Applying devCellPy using known cell type annotations on human glutamatergic data with
known cell type annotations created a custom classification model. This model was used to
classify the chimpanzee’s data. 10 fold cross validation was used in model training and cells
classified with <50% certainty were annotated as “unclassified”. Unclassified cells were
denoted as chimpanzee specific cell types. To get the list of predictor genes for cell type
clustering, devCellpy’s incorporated SHAP algorithm ranked the top positive predictor genes.

Gene ontology and cell interaction analysis

The gene expression profiles of each cell subclass and cell types produced by DEG analysis
were investigated in gene ontology (GO) enrichment. The online resource gprofiler was used
for GO analysis. While the results of GO enrichment are not granular enough to paint a
cohesive image of the cell type function, gprofiler can validate marker genes if the genes map
to neuron related pathways. Furthermore, gprofiler can grant a summary of a subclass
function, and this was cross-referenced with existing papers to determine the validity of the
subclasses.

To understand the intercellular communications of primate glutamatergic cells, CellChat can
infer the major molecule interactions and the major signaling roles of each cell type based on
highly expressed and differential genes. Specifically, it uses gene sets to predict likely
ligand-receptor pairs and cofactors from a list of roughly 2200 human signaling molecule
interactions contained in the CellChatDB were used. The cell by gene count matrix was
normalized to 10000 reads per cell and log transformed. Overexpressed genes of each cell
type were identified using the Wilcox test comparing one to all, with p-value < 0.005 and fold
change greater than 1.2. The overexpressed signaling pathways were identified by examining
the overlap between the overexpressed genes and the ligand-receptor pairs in the database.
For each cell pair, 25% truncated average expression of ligands, receptors, and cofactors of
the overexpressed signaling pathways were used to derive the communication probability
using the hill function. The probability was assigned zero if the p-value of a permutation test
was greater than 0.05. Within the inferred cell-cell communication network, the dominant
interaction sender and receivers, as well as the contribution of signals in terms of outgoing and
incoming were identified by calculating the weighted outdegree and weighted indegree of each
interaction, producing an interaction summary for each cell type.
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