

Evaluating the Need for Seatbelts in Auto Rickshaws: A Comparative Analysis of Passenger Acceleration and Safety Measures in Indian Road Transport

Suhaani Sriram

Background Information:

An auto rickshaw, also known as an auto, rickshaw, or tuk-tuk, is a three-wheeled motorized vehicle commonly used for transportation in many countries, particularly in India and other South Asian countries. Auto rickshaws play a vital role in urban transportation systems, especially in developing countries, by providing an affordable and efficient means of travel. Usually used for short distance travel and last mile connectivity in both urban and suburban areas. Usually having an open cabin with bench seating the question of auto rickshaw safety is an extremely imperative one. Safety belts have become a necessity in recent years in all modes of transportation including cars, buses, airplanes etc. The use of seatbelts has grown dramatically since the introduction of the 3-point seatbelt in 1959. Yet seatbelts are still not available in one of the most widely used modes of transport, autorickshaws.

Problem Statement:

Despite the extensive use of rickshaws in urban areas such as Gurugram these vehicles have no safety mechanism for passengers or drivers.

In 2018 5.9% of all road accidents in that year were attributed to auto Rickshaw related collisions (*Road Accidednts in India - 2018.cdr*, 2019). 56% of all accidents were a result of 'Head on collision', 'Hit and Run' or 'Hit from the Back'. Vehicle to vehicle collisions made up 52.2% of the cases of accident related deaths. The public perception of auto rickshaws is mainly unsafe under 2 major categories which is unsafe structure and unsafe vehicle dynamics (Priye & Manoj, 2020, #). Unsafe structure refers to the lack of stable structure, railings, coverings and lack of rear-end protection. Unsafe dynamics refers to the fear of over-turning and reckless driving by auto rickshaw drivers. A study conducted in 2017 on the awareness of maximum permissible speed limit of e-rickshaws in Burdwan Municipality indicated that 78.2% were unaware of speed limits (Goswami et al., 2018, #). Hence the need for seatbelts in auto rickshaws in pertinent as the use of auto-rickshaws and e-rickshaws in predicted to grow in the future.(insert stat backing this claim)

Method of Data Collection:

Data was collected using the Phyphox app, specifically utilizing the acceleration monitor feature, which excludes acceleration due to gravity. Acceleration data was recorded along the x, y, and z axes while the vehicles were in motion and displayed as line graphs. The acceleration monitor was used during travel in both cars and auto rickshaws on various types of roads, including highways, wide roads, and uneven roads with potholes.

The collected data was then exported to Excel sheets, where the focus was primarily on the acceleration along the x-axis. The data for cars and auto rickshaws was monitored and compared to analyze the differences in acceleration experienced by passengers in these vehicles

Objectives and Research Questions:

The objective of this research paper is to highlight and analyze the differences in linear acceleration experienced by a passenger when riding in an auto rickshaw compared to a commercial car. In 2018, there were approximately 27,400 road accidents in India involving auto rickshaws (Government of India, 2018). By analyzing the acceleration data and comparing it with that of a car, which is equipped with safety features and provides a smoother ride, I aim to emphasize the necessity of seatbelts in auto rickshaws.

Abstract:

The lack of safety features in Auto rickshaws poses a huge problem as they serve as the main 'last mile' or short distance transportation vehicles. The lack of basic protective features such as seat belts which are seen in more secure vehicles such as cars and buses highlights the lack of proper consideration amongst manufacturers for the necessity of seatbelts in Auto Rickshaws. This study focuses on highlighting the jerks and accelerations experienced by a passenger in an Auto rickshaw and serves to further provide perspective by comparing similar distance and route accelerations experienced by passengers in cars. The data was collected using the acceleration monitor in 3 axes available through the phone app Phyphox. Data was collected in collaboration with Rapido from an auto driver commuting chiefly in Gurugram. Over the course of 48 hours. This data was compared to data collected from various car passengers traveling in similar areas as that of the auto. The results show significantly higher jerks experienced by a passenger in an Auto rickshaw traveling the same route compared to a passenger traveling in a car. Data highlights that the change in acceleration experienced in an auto ride is also significantly higher than in a car. This research demonstrates the higher risk to human safety and health posed by an Auto rickshaw when compared to a car and hence emphasizes the necessity for seatbelts in Auto rickshaws to reduce road accident related injuries and improve the public perception of safety in autos.

Methodology:

The app used to collect the acceleration data is: Phyphox (physical phone experiments) is a free app that turns smartphones into scientific instruments using built-in sensors. It allows users to conduct experiments in physics, engineering, and related fields by measuring acceleration, sound, light, and other data. It's widely used for educational and research purposes. Using the 'acceleration without 'g' feature on the phone, data was collected from both cars as well as auto rickshaws. The "Acceleration without g" experiment in Phyphox measures linear acceleration while excluding the effect of gravity. Normally, smartphone accelerometers measure both the forces of motion and gravity, which can be challenging to separate. This experiment isolates the motion by subtracting the gravitational component. The process followed is: 1)Data Collection: The phone's accelerometer records the total acceleration (including gravity) in three axes (x, y, z). 2) Gravity Removal: The app applies an algorithm to remove the gravitational acceleration (9.81 m/s²). This is done by identifying the gravity vector based on the phone's orientation. 3)Linear Acceleration: Once gravity is subtracted, the remaining values represent only the acceleration caused by movement, allowing for pure motion analysis. The Phyphox app has been utilized in many previous studies for example; to measure the moment of inertia of a hollow cylinder (Yasaroh et al., 2021, #). Additionally, it was also applied to perform collaborative experiments at the college level including measurement of the frequency of oscillation in a spring experiment (Staacks et al., 2022, #). In this paper the app has been used in 2 vehicles over the course of 7 days; i)Bajaj Re Compact 4 seater Petrol Auto Rickshaw 236.2 Cc Engine And 8 Liter Tank Capacity ii) Toyota Innova Crysta 7-8 seater 65 liter capacity petrol vehicle with 2393 cc, 147.51 bhp, and 343 Nm of torque (The Economic Times, 2019). The phone used to collect data on the car was an iphone XR IOS 16.6.1 and the phone used to collect data in the auto was a One+ 3 Android 6.0.1. The phone in the car was placed on the rear seat adjacent to the passengers' legs allowing it to experience each 'jerk' and acceleration equal to that experienced by a rear-seat passenger. In the auto the phone was placed on a holder next to the steering of the auto so the motion measured is most close to the acceleration experienced by the driver of the auto. The data collected was plotted in real-time on 3 individual graphs the x, y,z graph; the horizontal, vertical and lateral respectively. This paper will focus primarily on the horizontal and vertical acceleration graphs (i.e. the x and y graphs) The y graph denoted the acceleration experienced due the braking, and gear shifting. The z graph denotes the acceleration experienced due the road bumps, speed breakers and is a direct indicator of the effectiveness of the suspension system of the car and auto-rickshaw.

Parameters for Ride Comfort and Safety:

All modern cars including the Toyota Crysta are designed with certain common features responsible for improving ride comfort and safety. Ride comfort primarily refers to the vehicle vibrations in the range of 0.5-25 Hz which is a result of road roughness and it is transmitted to the passenger via shock absorbers, tires, suspension and seats (Wu et al., 2023, #).

Listed below are the key features of the Innova Crysta responsible for improved safety and comfort:

Seatbelts:

Seat belts are essential safety devices in cars that secure occupants during sudden stops or collisions. They reduce the risk of injury by restraining passengers, preventing impact with the vehicle's interior, and minimizing movement. Seat belts have proven highly effective in lowering fatalities and serious injuries in car accidents (Chaubey et al., 2018, #).

ABS(Anti Lock Braking System), EBD, BA:

Anti-lock Braking System (ABS) is a safety technology in vehicles designed to prevent the wheels from locking up during braking. This helps maintain traction between the tires and the road, allowing drivers to maintain steering control even in emergency braking situations. ABS automatically adjusts the brake pressure to prevent skidding, improving safety on slippery or uneven road surfaces. It is especially useful in preventing accidents by reducing the likelihood of losing control during hard braking or sudden stops, making vehicles safer and more stable in various driving conditions. (Qasem & Abdullah, 2024, #)

Electronic Brakeforce Distribution (EBD) is a system that works alongside ABS to automatically vary the braking force applied to each wheel, based on road conditions, vehicle load, and speed. It ensures optimal braking efficiency by distributing more force to wheels with greater traction, improving stability and reducing stopping distances. (Grover et al., 2018)

Brake Assist (BA) is a safety system that helps drivers apply maximum braking power during emergency stops. It detects when the driver is braking suddenly but not with full force and automatically increases brake pressure to reduce stopping distances. BA enhances overall braking performance, especially in critical situations.

Steel Constructional Material for Car Body:

The car body is mainly made up of steel due to its high strength and energy intensity. Energy intensity refers to the ability to absorb impact energy on collision. Multiple types of steels are

used along with many other alloys and plastics serving particular purposes. (Hovorun et al., 2017, #)

Airbags:

Airbags are essential safety devices in vehicles designed to protect occupants during collisions. They inflate rapidly upon impact, cushioning passengers and reducing the risk of serious injuries. Common types include frontal, side, and curtain airbags, each targeting specific areas to enhance

Double-wishbone Suspension at the Front and a Four-link Suspension at the Rear:

The Double-wishbone suspension present in the front is also known as the 'double A arm' connecting the wheels to the chassis. It consists of two 'A' shaped arms with shock absorbers and coils in between responsible for reducing the vertical movement of the car while also improving car cornering. (Shrivastva et al., 2019, #)

The Four-link rear suspension provides for greater adjustability to the car depending on road roughness while also increasing traction and stability due to multiple points of contact between the wheel and the chassis.

Picture by Simiprof (talk) - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=25750309)

Figure 1: An illustration of double-wishbone suspension

The causes for lack of comfort in auto-rickshaws include:

Leaf Spring Suspension System in the Rear (Shirinzadeh et al., 2009, #):

This consists of flat strips on metal "metal leafs" with an elliptical shape placed on top of each other with a gradation in their sizes. These absorb large forces and thus reduce vertical motion of the vehicle. They are considered suitable mainly for commercial transport vehicles and trucks. The design is relatively simpler than the double wishbone suspension

used in cars, and are considered less comfortable due to interleaf friction. Leaf spring suspension has a much higher effective-ride stiffness and are more stiff compared to wishbone suspension providing a rougher ride especially over uneven roads as seen mainly in India (Tevema, 2024)

Figure 2: An example of leaf spring suspension

Picture By Jim Gill http://www.flmvpa.org/articles/armymotors_gill.htm, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2230192

Lightweight and Rigid Frame: Auto-rickshaws are designed to be lightweight for fuel efficiency and easy maneuvering in urban areas. However, this light frame can amplify vibrations and make the vehicle more susceptible to instability when encountering bumps, potholes, or when carrying heavier loads.

Single Front Wheel Steering: The single front wheel is responsible for both steering and stabilizing the vehicle, reducing its ability to grip the road during turns, particularly when carrying passengers or cargo in the back. This design makes three-wheelers more likely to skid or lose control compared to four-wheeled vehicles.

Weight Distribution While Turning: The weight of the front axle is significantly less than the weight on the rear as the passengers and battery box are placed at the rear while the front is driven by a singular wheel. Due to this while turning the vehicle is very easily liable to oversteer as the speed increases the steering angle continually decreases making it very easy for the vehicle to overturn at speeds where a car would remain stable. (Austin et al., 2015, #)

Higher center of gravity: Through experimentation it has been found that the center of gravity of a 3-wheeler auto-rickshaw is behind the neutral steering point causing oversteer. Additionally for better stability according to Patrick F, (2010), On The Golden Rule of Trike Design(Austin et al., 2015, #).The center of gravity should ideally be at a height less than half the track length (the distance between centrelines of wheels attached on the same axle). In reality the center of gravity is at a height much higher than half the track width making it unstable.

Thus, the above concepts lead one to believe that auto-rickshaw rides would show a much greater 'roughness' or discomfort in comparison to cars. The same has been validated in the graphs below comparing the acceleration in x,y axis between an Innova Crysta and a Bajaj RE Auto.

Acceleration Graphs and Analysis

The app Phyphox was used in both the Innova Crysta and the Bajaj RE Auto and acceleration data was collected in both along the x, y, z axis.

The device was fixed such that the y-axis of the phone was in line with the axis of the vehicle. The y axis graph indicates the acceleration recorded during forward or backward straight line motion of the vehicle thus, it provides a metric of the acceleration and de- acceleration experienced in the vehicles in the driving direction. The x-axis graph indicates the lateral acceleration of the vehicle perpendicular to the driving direction in the horizontal plane, thus it highlights the acceleration irregularity during turning. The z-axis documents the vertical acceleration and thus gives an effective measure of the 'jerks' experienced due to road conditions and suspension effectiveness. (Wang, 2020)

Assuming limits in accordance with 'Standards for passenger comfort in automated vehicles: Acceleration and jerk' (de Winkel et al., 2023, #) the upper limit for what passengers perceive comfortable for lateral acceleration is taken as 0.98 (m/s^2). The limit for passenger comfort for longitudinal acceleration is taken in accordance with 'A survey of longitudinal/linear acceleration comfort studies department of transportation' (Hoberock, 1976)Thus, for linear acceleration the upper limit for comfort is taken as 1.47 (m/s^2). Since vertical acceleration is an inherently unfavorable condition to comfort as it quantifies the 'bumpy-iness' of the ride, it has been compared between the car and auto purely based on the amplitude and magnitude of irregularity.

The assumed values of threshold acceleration have been taken from 2 individual research papers on linear and lateral passenger comfort standard, yet these values vary from those given in other literature based on the method of research, passenger demographic and subjectivity of the research thus, these values are not universally standard but for the purpose of this paper the following values have been assumed.

Figure 3: Indicating the orientation of the axes on the phyphox app

Auto:

Acceleration Graph Along y-axis i.e.Linear (along direction of motion) Acceleration

Figure 4:Graph generated by Phyphox app of y-axis acceleration in auto

Description:

The graph indicates both positive and negative peaks with majorly steep slopes between successive fluctuations. The lines appear extremely condensed thus indicating that the number of fluctuations in linear acceleration per second is extremely high thus the frequency of fluctuation (i.e acceleration change) is extremely high. The positive region of the graph highlights when the auto is speeding up (the speed is increasing); the negative region indicates when the auto is slowing down (speed is decreasing). When the acceleration is zero the auto can be assumed to be moving with a constant velocity. From the graph it is clear that the auto is almost never moving at a constant speed instead constantly alternating between accelerating and decelerating thus subjecting the passenger and driver to constantly changing conditions. From the graph it is clear that the extent of deceleration is very high with some peak values including -21.61 and -24.13 (m/s^s) additionally the slope of the lines is tending to zero indicating that the acceleration was not gradual.

Home	Insert	Draw	Page Layout	Formula	a Data	Review	View	
E.	X	Verdana		0 - A	A. Ξ	日間	8.4	
	0.4							
Paste	6	III (1)	1.* 田・	2 · A ·				12
No. 1								
20		$\sim f_{\rm X}$		_				
1			.	- 1	¢.	•		ε.
Time	00	Linear Aco	eleration y (m/s*3	Bern 1				
2	0.133943986	£	-0.2387	91723				_
	0.138908351		-0.2089	6048				_
	0.143062199	<u>.</u>	-0.1897	29048			_	_
	0.148806047		-0.3633	40635			-	
	0.353780412	<u></u>	-9.2988	79425				
14	0.15672426		-0.276	04975				
M - 1	0.163698621	C	-0.3728	13049				
M .	0.150642473		-0.3010	00001				_
H	0.17308632		-0.1802	00018				_
	0.1700000000		-0.4009	0.0.099				
	0.183504511	<u></u>	-0.2113	13091				_
*	0.180448383		-0.199	0.01129				_
	0.100422740	-	-0.1367	71077				_
**	A. 2017 Addition	· · · · · · · · · · · · · · · · · · ·	-9.03%	STRATE.				_
- 10	0.20224033		-0.0511	No. 11				
11	0.313250175		-0.124	007264				
	A THAT MANY	· · · · · ·	-0.2043	43132				_
-	0.223146962	1	.0.150	00115				_
-	0.228121232	1	-0.1547	94982				_
121	0.23306508	11	-0.166	216412				
10	0.238039445		-0.1699	45172				
24	0.24301381		-0.1740	098945				_
25	0.347957658		-0.1863	22689				_
26	0.252932023	1.	-0.2429	12531				_
27	0.257875871	0.0	-0.2775	51651				
20	0.362809709		-0.3650	89512				
29	6.257794084	6 C	-0.2202	20395				_
30	0.272737932	2	-0.3457	22866				_
30	0.277712297	*: · · · · · · · · · · · · · · · · · · ·	-0.1235	40163				
32	0.282656144	£	-0.129	06909				
23	6.2875999902	£0	-0.1714	73026				_
34	0.292574357	8. S.	-0.220	0.3402				_
15	6.297518205	E	-0.2343	92662				
28	0.30249257	7	-0.2537	21991				
10	0.307436408	5	-0.1779	32508				_
30 L	0.302400783	8	-0.1661	10039				_
20	0.117354631		-0.1685	21001				_
	0.322296478		-0.2460	48212				_
1	0.327272844		-9.2355	12909				_
-	0.332256691	· · · · · · · · · · · · · · · · · · ·	-0.233	62412				_
- N	0.137191057		-0.3362	48732				_
	9.342134904	. · · · · · · · · · · · · · · · · · · ·	-0.2711	68947				_
	0.547078752		-0.2711	28893				_
46	9.352053117	· · · · · · · · · · · · · · · · · · ·	-0.3806	58484				

The data from the above graph was then exported to Excel where the data stamp per second was recorded individually.

Figure 5: The data of acceleration on y-axis as displayed on excel

The acceleration in the y-axis was compared with the upper limit value of 1.47 m/s^s using the 'IF' function in excel. Each data was then categorized and 'comfortable' or 'uncomfortable' based on the result of the 'IF'

function. The number of 'comfortable'

and 'uncomfortable' was then calculated using the 'COUNTIF' function.

Figure 6:The data of acceleration on y-axis as displayed on excel, after applying the 'IF' and 'COUNTIF' formula

Time (s) Linear Acceletation v (m/s^2) comfortable Comfortable Comfortable Comfortable 60903 4033 0.138918351 0.218791723 comfortable 60903 60903 603033 603	4	A		C.	0	E.
2 0.133943985 -0.214791722 comfortable 60903 4433 3 0.139918351 -0.208964348 comfortable 6 <	1	Time (s)	Linear Acceleration y (m/s^2)	comfortable	Comfortable	Uncomfortable
1 0.139918351 -0.2099563445 comfortable 4 0.143862199 -0.188729048 comfortable 5 0.18870425 -0.27613975 comfortable 6 0.153780412 -0.298873425 comfortable 7 0.15388025 -0.272613949 comfortable 8 0.163888025 -0.272613949 comfortable 9 0.16842473 -0.2019795 comfortable 10 0.17386025 -0.272613949 comfortable 11 0.189448311 -0.211373091 comfortable 12 0.189448311 -0.19413719 comfortable 13 0.199366594 -0.032271572 comfortable 14 0.20124407 -0.015109423 comfortable 15 0.213250172 -0.015109423 comfortable 16 0.213250172 -0.13402944 comfortable 17 0.202244007 -0.015402412 comfortable 16 0.21325012 -0.154755552 comfortable 16	2	0.133943986	-0.218791723	comfortable	60903	4611
1 0.14382199 -0.18720446 comfortable 5 0.148806047 -0.363340616 comfortable 6 0.133720412 -0.29614975 comfortable 7 0.15872425 -0.27513945 comfortable 9 0.15872425 -0.27513945 comfortable 9 0.15872425 -0.201610913 comfortable 9 0.17358052 -0.21965299 comfortable 9 0.178540635 -0.21995299 comfortable 10 0.188544311 -0.12493729 comfortable 11 0.188544311 -0.12457372 comfortable 12 0.188544311 -0.12457372 comfortable 13 0.19136694 -0.03221572 comfortable 14 0.201340959 0.010750244 comfortable 15 0.201340959 0.01275372 comfortable 16 0.23248027 -0.518423 comfortable 16 0.23146967 -0.14600119 comfortable 18 0.23	31	0.138918351	-0.208964348	comfortable		
5 0.14880047 -0.353340516 comfortable 6 0.153720412 -0.228872425 comfortable 7 0.15382426 -0.27613975 comfortable 8 0.153820426 -0.272613949 comfortable 9 0.16842073 -0.20160031 comfortable 10 0.17386025 -0.21997391 comfortable 12 0.181504513 -0.211973991 comfortable 13 0.181504513 -0.132599354 comfortable 14 0.19246534 -0.132599354 comfortable 15 0.19246534 -0.032271572 comfortable 16 0.20324607 -0.015189423 comfortable 17 0.20324607 -0.015189423 comfortable 19 0.213259172 -0.11400744 comfortable 19 0.21320159 -0.20324312 comfortable 10 0.23306508 -0.16625452 comfortable 10 0.23306508 -0.16625452 comfortable 10	4	0.143862199	-0.188729048	comfortable		
0 0.153720412 0.238872425 comfortable 7 0.15872435 -0.272613245 comfortable 9 0.138840425 -0.272613245 comfortable 9 0.138840425 -0.272613245 comfortable 9 0.17358052 -0.2352058 comfortable 9 0.17358053 -0.21372091 comfortable 10 0.18544533 -0.21372091 comfortable 11 0.198442745 -0.135299354 comfortable 12 0.18844031 -0.19613719 comfortable 13 0.19846034 -0.03271572 comfortable 14 0.198146034 -0.045211572 comfortable 15 0.203264807 -0.051189423 comfortable 16 0.21346957 -0.14609119 comfortable 17 0.23165084 -0.14629452 comfortable 16 0.23121212 -0.15453592 comfortable 17 0.23306504 -0.16429452 comfortable 18 <t< th=""><th>6</th><th>0.148806047</th><th>-0.353340616</th><th>correloctable</th><th></th><th></th></t<>	6	0.148806047	-0.353340616	correloctable		
2 0.15872435 -0.27614975 comfortable 3 0.158872435 -0.272613949 comfortable 3 0.17358623 -0.272613949 comfortable 3 0.17358623 -0.27369336 comfortable 3 0.18350635 -0.219901299 comfortable 3 0.18350635 -0.21997391 comfortable 3 0.18350634 -0.132599354 comfortable 3 0.19346294 -0.036271572 comfortable 3 0.19346959 -0.01970244 comfortable 4 0.203244607 -0.051189423 comfortable 5 0.223146067 -0.051294232 comfortable 6 2.2330690 -0.154735522 comfortable 7 0.23812122 -0.1547355232 comfortable 8 0.238039445 -0.16824512 comfortable 9 0.238123122 -0.154753532 comfortable 10 0.27875971 -0.25809512 comfortable 10 0.2	6	0.153780412	-0.298873425	comfortable		
8 0.163898625 -0.272613249 comfortable 9 0.163898625 -0.272613249 comfortable 9 0.1738662 -0.2163031 comfortable 11 0.1738662 -0.21995229 comfortable 12 0.18544533 -0.21197209 comfortable 13 0.188446381 -0.10413719 comfortable 14 0.19842246 -0.03227572 comfortable 15 0.198366544 -0.0327572 comfortable 15 0.201264807 -0.051189423 comfortable 16 0.213259172 -0.1400794 comfortable 16 0.213259172 -0.14600119 comfortable 17 0.201264807 -0.051189423 comfortable 16 0.213259172 -0.14600119 comfortable 17 0.22146867 -0.14622412 comfortable 17 0.2306508 -0.18629258 comfortable 17 0.23161681 comfortable -0.232053023 0.232937023	51	0.15872426	-0.22614925	comfortable		
9 0.168642473 -0.201630831 comfortable 9 0.1733802 -0.185320516 comfortable 9 0.1738602 -0.21995299 comfortable 10 0.1854065 -0.21995299 comfortable 11 0.1854053 -0.21995299 comfortable 12 0.1854053 -0.2197291 comfortable 13 0.19422746 -0.132599354 comfortable 14 0.19346254 -0.032189123 comfortable 15 0.203246057 -0.051189423 comfortable 16 0.213259172 -0.13400746 comfortable 16 0.213259172 -0.154735592 comfortable 16 0.21320919 -0.20324312 comfortable 17 0.22316508 -0.16425452 comfortable 18 0.23812122 -0.154735592 comfortable 19 0.23306508 -0.16425452 comfortable 10 0.238039445 -0.1648245177 comfortable 10 0.27791031 -0.17403981 comfortable 10 0.2779104 -0.279151651 comfortable 10 0.27791034 -0.174572366 comfortable </th <th></th> <th>0.163656625</th> <th>-0.222613049</th> <th>comfortable</th> <th></th> <th></th>		0.163656625	-0.222613049	comfortable		
0 0.17358612 0.185320616 comfortable 0 0.17358663 0.219952299 comfortable 0 0.1854653 0.219952299 comfortable 0 0.1854653 0.21372991 comfortable 0 0.18946733 0.213729915 comfortable 0 0.199366594 0.036271572 comfortable 15 0.20324697 0.051189423 comfortable 16 0.23366594 0.0352189423 comfortable 17 0.20324697 0.051189423 comfortable 18 0.213259172 -0.14600119 comfortable 19 0.213259172 -0.14640119 comfortable 19 0.21300594 -0.16623432 comfortable 20 0.233005945 -0.16623432 comfortable 21 0.233005945 -0.16623432 comfortable 22 0.23302323 0.18423233 comfortable 23 0.237950391 0.27575332 comfortable 24 0.24791		0.168642473	-0.201630831	comfortable		
0.178540665 -0.219950299 comfortable 12 0.183504533 -0.211372091 comfortable 13 0.183504533 -0.211372091 comfortable 14 0.193422746 -0.132599354 comfortable 15 0.193462544 -0.0132592354 comfortable 16 0.201340995 0.010750244 comfortable 17 0.20284007 -0.031109422 comfortable 18 0.213259172 -0.12400794 comfortable 19 0.21320915 -0.202243122 comfortable 19 0.21320915 -0.202243122 comfortable 10 0.23316508 -0.154755532 comfortable 10 0.23305545 -0.154755532 comfortable 10 0.23305545 -0.16452452 comfortable 10 0.23305545 -0.16452452 comfortable 10 0.27751032 -0.245912513 comfortable 10 0.277710297 -0.25609512 comfortable 10 0.2	tin.	0.17358632	-0.185330616	comfortable		
11 0.183504533 -0.211372091 comfortable 12 0.189448311 -0.14613719 comfortable 13 0.199422746 -0.33299356 comfortable 14 0.199366594 -0.032291372 comfortable 15 0.203244007 -0.051189423 comfortable 16 0.213259172 -0.1340794 comfortable 17 0.203244007 -0.051189423 comfortable 18 0.213259172 -0.1340794 comfortable 19 0.21329019 -0.203243132 comfortable 19 0.223146067 -0.164621412 comfortable 10 0.23306508 -0.164621412 comfortable 10 0.23306508 -0.164621412 comfortable 10 0.23750790 -0.164621912 comfortable 10 0.23750791 -0.16427132 comfortable 10 0.247957658 -0.18522689 comfortable 10 0.2479579404 -0.22270395 comfortable 10 </th <th></th> <th>0.178560685</th> <th>-0.219953299</th> <th>comfortable</th> <th></th> <th></th>		0.178560685	-0.219953299	comfortable		
11 0.188448381 -0.19613719 comfortable 13 0.19342746 -0.132599354 comfortable 14 0.19342746 -0.132599354 comfortable 15 0.19342746 -0.132599354 comfortable 15 0.20340959 -0.019750244 comfortable 16 0.213259172 -0.12400794 comfortable 18 0.213259172 -0.12400794 comfortable 19 0.213259172 -0.12400794 comfortable 10 0.223146867 -0.16408119 comfortable 20 0.23305568 -0.164234122 comfortable 21 0.23305568 -0.186322689 comfortable 22 0.24301381 -0.174039841 comfortable 23 0.247957658 -0.186322689 comfortable 24 0.247957658 -0.186322689 comfortable 25 0.247957658 -0.186322689 comfortable 26 0.225932023 -0.21757286 comfortable 27 </th <th>12</th> <th>0.183504533</th> <th>-0.211323091</th> <th>comfortable</th> <th></th> <th></th>	12	0.183504533	-0.211323091	comfortable		
1 0.191422746 -0.132599354 comfortable 15 0.198366544 -0.032271572 comfortable 15 0.203244807 -0.031271572 comfortable 16 0.21329172 -0.013189423 comfortable 17 0.203244807 -0.051189423 comfortable 18 0.21820019 -0.20324122 comfortable 19 0.21820019 -0.20324512 comfortable 10 0.23312122 -0.154755592 comfortable 10 0.23306508 -0.16625452 comfortable 10 0.239039445 -0.168285177 comfortable 10 0.239039445 -0.168285177 comfortable 10 0.247957658 -0.18832689 comfortable 10 0.27875871 -0.2551651 comfortable 10 0.27875871 -0.25508752 comfortable 10 0.27791044 -0.2270395 comfortable 11 0.277712297 -0.12360183 comfortable 11	11	0.188448381	-0.19613719	comfortable		
1 0.198366594 -0.038271572 comfortable 15 0.203346959 -0.019756284 comfortable 16 0.20324687 -0.05119423 comfortable 16 0.213259172 -0.12400794 comfortable 16 0.213259172 -0.12400794 comfortable 16 0.213259172 -0.1400794 comfortable 16 0.223146667 -0.16402412 comfortable 17 0.23105048 -0.16423412 comfortable 16 0.23305945 -0.16423412 comfortable 17 0.23305945 -0.186322689 comfortable 16 0.23005945 -0.186322689 comfortable 16 0.24957873 -0.277551651 comfortable 17 0.257879871 -0.225070395 comfortable 18 0.22773132 -0.2270395 comfortable 18 0.22773323 -0.12540183 comfortable 18 0.22773332 -0.1275401843 comfortable 19	14	0.193422246	-0.132599354	comfortable		
16 0.203340959 0.010750234 comfortable 17 0.203244027 -0.051189423 comfortable 16 0.213259172 -0.031189423 comfortable 16 0.21320019 -0.203243123 comfortable 17 0.232146067 -0.1640019 comfortable 18 0.22312122 -0.154735592 comfortable 19 0.23300508 -0.16625452 comfortable 20 0.23300508 -0.16425452 comfortable 21 0.23300508 -0.18432589 comfortable 22 0.233005945 -0.18432589 comfortable 23 0.24391381 -0.17403941 comfortable 24 0.23751930 -0.242912531 comfortable 25 0.2579503 -0.275951651 comfortable 26 0.27779404 -0.22070395 comfortable 27 0.12540163 comfortable -0.2779404 277712287 -0.12540163 comfortable -0.27794044 2777122	15	0.108366594	-0.036271572	comfortable		
1 0.2032848057 -0.051189423 comfortable 15 0.213259172 -0.13400744 comfortable 16 0.213259172 -0.14400744 comfortable 17 0.22146867 -0.16400119 comfortable 20 0.22316508 -0.16427432 comfortable 21 0.23305504 -0.16427452 comfortable 22 0.233055045 -0.16427452 comfortable 23 0.233055045 -0.16427452 comfortable 24 0.2330059445 -0.16427452 comfortable 25 0.233005945 -0.16427452 comfortable 26 0.24301381 -0.174039441 comfortable 27 0.257875871 -0.277551651 comfortable 28 0.257875871 -0.225030512 comfortable 29 0.277751295 -0.225030512 comfortable 20 0.22759392 -0.125401401 comfortable 21 0.27751205 -0.2125401421 comfortable 22.2	16	0.201340959	0.010750294	comfortable		
1 0.213259172 -0.12400744 comfortable 19 0.213259172 -0.12400744 comfortable 19 0.238121322 -0.154755392 comfortable 21 0.238121322 -0.154755392 comfortable 21 0.238121322 -0.154755392 comfortable 20 0.23805945 -0.16462452 comfortable 20 0.23805945 -0.164845177 comfortable 20 0.23803945 -0.1648245177 comfortable 21 0.23803945 -0.186332689 comfortable 22 0.247957658 -0.186332689 comfortable 23 0.25785871 -0.27551651 comfortable 24 0.2479179 -0.265089512 comfortable 25 0.277713237 -0.145722386 comfortable 26 0.277713237 -0.125720395 comfortable 31 0.282566144 -0.1290099 comfortable 32 0.282566144 -0.1290099 comfortable 33 <th>晉</th> <th>0.705284807</th> <th>-0.051189423</th> <th>confortable</th> <th></th> <th></th>	晉	0.705284807	-0.051189423	confortable		
1 0.218203019 -0.208243132 comfortable 20 0.23146867 -0.16408119 comfortable 21 0.23146867 -0.16408119 comfortable 22 0.23306508 -0.16422432 comfortable 23 0.23305508 -0.16422432 comfortable 24 0.23305708 -0.17403844 comfortable 25 0.2330333 -0.17403844 comfortable 26 0.2393023 0.24291233 comfortable 27 0.257875971 -0.25509512 comfortable 28 0.262819719 -0.25509512 comfortable 29 0.277732297 -0.12540163 comfortable 29 0.277732297 -0.12540163 comfortable 20 0.27580922 -0.171472286 comfortable 21 0.27751297 -0.212540163 comfortable 22 0.23759992 -0.1714720864 comfortable 31 0.217599292 -0.21420 comfortable 32 <td< th=""><th>10</th><th>0.213259122</th><th>-0.12400294</th><th>comfortable</th><th></th><th></th></td<>	10	0.213259122	-0.12400294	comfortable		
0.223146867 -0.16400119 comfortable 21 0.22312122 -0.154755392 comfortable 22 0.23306500 -0.16402452 comfortable 23 0.23306500 -0.16402452 comfortable 24 0.23005945 -0.16402452 comfortable 25 0.23003945 -0.168845177 comfortable 26 0.247957558 -0.185322689 comfortable 27 0.257875871 -0.277551651 comfortable 28 0.2479754064 -0.220270395 comfortable 29 0.277731227 -0.145722386 comfortable 20 0.277732297 -0.1215401631 comfortable 21 0.277512237 -0.1214723265 comfortable 22 0.2835599992 -0.171473026 comfortable 23 0.2875199992 -0.171473026 comfortable 24 0.237518235 -0.214392482 comfortable 25 0.327436418 -0.179737596 comfortable 26	雷	0.218303016	-0.208243132	comfortable		
0 0	20	0.223146867	.0 (6608)10	comfortable		
0.123126550 0.12422452 Confortable 2 0.23305945 0.16622452 Confortable 2 0.23305945 0.16622452 Confortable 2 0.23305945 0.16622452 Confortable 3 0.247957658 0.185322689 confortable 0.247957658 0.185322689 confortable 0.257879873 0.277551651 confortable 2 0.257879873 0.277551651 confortable 3 0.27771004 0.2270395 confortable 3 0.27751227 0.145722865 confortable 3 0.27751207 0.12500990 confortable 3 0.27518025 0.214392465 confortable 3 0.2825574357 0.214392462 confortable 3 0.327518025 0.214392462 confortable 3 0.327436418 0.177937506 confortable 3 0.32249257 0.213926421 confortable 3 0.317346418 0.177937506 confortable	57	0.228121232	-0.154755592	comfortable.		
0.1380394 0.168845177 0.00010488 20 0.238039485 -0.168845177 0.00010488 21 0.24301381 -0.174039841 comfortable 22 0.252933023 -0.242912531 comfortable 23 0.252933023 -0.242912531 comfortable 24 0.25795837 -0.2551651 comfortable 25 0.25795901 -0.255089512 comfortable 26 0.277914084 -0.22270395 comfortable 27 0.2556614 -0.222270395 comfortable 28 0.277712297 -0.123540183 comfortable 29 0.225514357 -0.123540184 comfortable 20 0.227518205 -0.214390492 comfortable 21 0.225514237 -0.214390492 comfortable 23 0.227518205 -0.214392452 comfortable 24 0.237519912 comfortable comfortable 31 0.317340418 -0.177937506 comfortable 32 0.317	쓝	0.23306508	0.16625452	comfortable.		
0.24301381 -0.174039841 comfortable 20.024301381 -0.174039841 comfortable 21.024301381 -0.174039841 comfortable 22.0247957658 -0.28322533 0.257875873 -0.277551651 comfortable 22.0257873873 -0.277551651 comfortable 23.02578794084 -0.220270395 comfortable 24.02579794084 -0.220270395 comfortable 25.02577512237 -0.145722886 comfortable 26.025759992 -0.17570128 27.025656144 -0.1290999 comfortable 28.0257518205 -0.214392562 comfortable 29.027518205 -0.214392562 comfortable 29.0377518205 -0.214392562 comfortable 29.0377518205 -0.214392562 comfortable 29.0377518205 -0.214392562 comfortable 29.037438418 -0.177937586 comfortable 20.337436418 -0.177937586 comfortable 20.3372456418 -0.2302412 comfortable 20.337252844 -0.23552259 comfortable 20.332266473 -0.24302412 comfortable 20.332266474 -0.23552259 comfortable 20.332216691 -0.2302412 com	÷.	0.233300,000	0.168845177	comfortable		
0.147301381 -0.174302369 Comfortable 0.247957658 -0.242912531 comfortable 0.252832023 -0.242912531 comfortable 0.252832023 -0.242912531 comfortable 0.25283794034 -0.27551651 comfortable 0.252794034 -0.22270395 comfortable 0.277712297 -0.12540163 comfortable 0.277712297 -0.12540163 comfortable 0.277712297 -0.12540163 comfortable 0.277712297 -0.12540163 comfortable 0.227518205 -0.214392642 comfortable 0.227518205 -0.214392642 comfortable 0.225514337 -0.21392642 comfortable 0.307436418 -0.177937566 comfortable 0.307436418 -0.177937566 comfortable 0.317354631 -0.166521881 comfortable 0.312216914 -0.2302412 comfortable 0.312216918 -0.24604212 comfortable 0.317354631 -0.166521881 comfortable <t< th=""><th>쑵</th><th>0.24301383</th><th>0.134030841</th><th>comfortable</th><th></th><th></th></t<>	쑵	0.24301383	0.134030841	comfortable		
20 0.252932023 -0.242912531 comfortable 27 0.257859871 -0.277551651 comfortable 28 0.257859871 -0.27551651 comfortable 29 0.257859871 -0.26509512 comfortable 29 0.257291034 -0.2262270395 comfortable 20 0.277712297 -0.12540163 comfortable 31 0.277712297 -0.12540163 comfortable 32 0.28566144 -0.1290499 comfortable 33 0.287599992 -0.171473026 comfortable 34 0.297518205 -0.213721991 comfortable 35 0.207438418 -0.17937506 comfortable 36 0.307438418 -0.166110039 comfortable 37 0.32249257 -0.213721991 comfortable 38 0.312410783 -0.166110039 comfortable 39 0.312410783 -0.246048212 comfortable 40 0.322708478 -0.246048212 comfortable <td< th=""><th>52</th><th>0.347657658</th><th>-0.196323680</th><th>comfortable</th><th></th><th></th></td<>	52	0.347657658	-0.196323680	comfortable		
0.257825871 -0.277551651 comfortable 20 0.257825871 -0.277551651 comfortable 21 0.257825871 -0.265089512 comfortable 22 0.257825871 -0.265089512 comfortable 23 0.277731229 -0.145722386 comfortable 23 0.277732297 -0.12540153 comfortable 24 0.28556144 -0.1290999 comfortable 25 0.2875199992 -0.171473026 comfortable 26 0.282574357 -0.21392662 comfortable 26 0.282574357 -0.21392682 comfortable 27 0.307436418 -0.177937566 comfortable 28 0.317354613 -0.166521881 comfortable 29 0.317354613 -0.166521821 comfortable 20 0.32259478 -0.2302412 comfortable 20 0.32216914 -0.2302412 comfortable 20 0.32259478 -0.246048212 comfortable 21 0.32216917 -0.2302412 comfortable 21 0.32216917 -0.2302412 comfortable 21 0.33221691 -0.271168947 comfortable	쁥	0 252032023	-0.242612531	comfortable		
0.22839713 0.22820951 0.20809512 0.000764444 25 0.227737332 0.222270395 comfortable 26 0.227737332 0.12570195 comfortable 27 0.225270395 comfortable 0.27772287 28 0.22751932 0.12540143 comfortable 29 0.22556144 0.12540193 comfortable 20 0.2255992 0.171473026 comfortable 20 0.22574357 0.2213926 comfortable 20 0.29574357 0.2213926 comfortable 20 0.29574357 0.22139264 comfortable 21 0.297518255 0.214392642 comfortable 20 0.23249257 0.213921940 comfortable 21 0.307436418 0.177937568 comfortable 20 0.31245073 0.2462128 comfortable 21 0.31245073 0.2302412 comfortable 20 0.37221984 0.23302412 comfortable 21 0.3722	55	0.252925023	-0.277551651	comfortable		
0.10289379 0.102020112 Confortable 20 0.27734034 -0.220270395 Confortable 21 0.27731323 -0.145722386 confortable 23 0.277312327 -0.12540133 confortable 23 0.282656144 -0.12900999 confortable 24 0.28255144 -0.22013402 confortable 25 0.27518205 -0.214392362 confortable 26 0.307438418 -0.177937506 confortable 27 0.307438418 -0.177937506 confortable 28 0.317354631 -0.166521881 confortable 29 0.317354631 -0.166521881 confortable 20 0.322209478 -0.2302412 confortable 27 0.322209478 -0.2302412 confortable 28 0.322209478 -0.2302412 confortable 29 0.322209478 -0.2302412 confortable 20 0.322209478 -0.2302412 confortable 20 0.37110897	쑵	0.2078700716	0.277331331	comfortable		
0 0.272737932 0.143722886 comfortable 31 0.277732297 -0.123540183 comfortable 32 0.227597 -0.123540183 comfortable 33 0.23759992 -0.171473026 comfortable 34 0.23759992 -0.171473026 comfortable 35 0.237518205 -0.214392362 comfortable 36 0.32249257 -0.213721991 comfortable 37 0.307433418 -0.177937566 comfortable 38 0.312249027 -0.16110039 comfortable 39 0.317354631 -0.166521881 comfortable 40 0.322269478 -0.246048212 comfortable 41 0.322269478 -0.246048212 comfortable 42 0.332216993 -0.2302412 comfortable 43 0.342134904 -0.271168947 comfortable 44 0.342134904 -0.271168947 comfortable 45 0.342134904 -0.271168947 comfortable 46	5	0.202019719	-0.202020312	comfortable		
0.277732297 -0.12540183 comfortable 33 0.277732297 -0.12540183 comfortable 34 0.282656144 -0.12904999 comfortable 35 0.292574357 -0.22117473026 comfortable 36 0.292574357 -0.2213721991 comfortable 36 0.292574357 -0.213721991 comfortable 37 0.30249257 -0.213721991 comfortable 38 0.30249257 -0.213721991 comfortable 39 0.312340183 -0.166521881 comfortable 39 0.3123206478 -0.246540212 comfortable 41 0.322206478 -0.2302412 comfortable 42 0.32216491 -0.2302412 comfortable 43 0.3221691 -0.2302412 comfortable 44 0.342134904 -0.271168947 comfortable 45 0.342084924 -0.271168947 comfortable 45 0.34208492 -0.271168947 comfortable 46 0.	10	0.222732032	-0.145772866	comfortable		
0.122365614 0.12500999 comfortable 0.22355614 -0.12473026 comfortable 0.22751025 -0.17473026 comfortable 0.22751025 -0.214392362 comfortable 0.30245257 -0.21392492 comfortable 0.3074336418 -0.177937506 comfortable 0.3074336418 -0.177937506 comfortable 0.317354631 -0.166521881 comfortable 0.31221691 comfortable comfortable 0.317354631 -0.166521881 comfortable 0.31221693 -0.24604212 comfortable 0.312216931 -0.24604212 comfortable 0.332216931 -0.2302412 comfortable 0.332216931 -0.2302412 comfortable 0.332216931 -0.2302412 comfortable 0.342134904 -0.2711689473 comfortable 0.342134904 -0.271168947 comfortable 0.342134904 -0.271168947 comfortable 0.342134904 -0.271168947 comfortable 0.34204	~	0.27273 2202	-0.173540143	comfortable		
0.2025014 -0.12473026 comfortable 31 0.20759992 -0.17473026 comfortable 32 0.202570357 -0.21372492 33 0.2025718205 -0.213724941 34 0.30249257 -0.213721941 35 0.207430418 -0.177937508 36 0.31245073 -0.213721941 36 0.31245073 -0.165321881 37 0.307430418 -0.1665321881 38 0.317354631 -0.1665321881 39 0.3122266478 -0.235522599 30 0.322266478 -0.235522599 310 0.166521881 comfortable 310 0.322266478 -0.235522599 32216691 -0.23522269472 comfortable 32 0.332216691 -0.23102412 comfortable 32 0.332216691 -0.231024712 comfortable 33 0.342134904 -0.271168947 comfortable 33 0.3420472 comfortable -0.33205317 332053117 -0.236058484 </th <th>-</th> <th>0.200044444</th> <th>0.1300000</th> <th>comfortable</th> <th></th> <th></th>	-	0.200044444	0.1300000	comfortable		
0.222574357 -0.22013462 comfortable 0.227518235 -0.214392362 comfortable 0.307436418 -0.177937506 comfortable 37 0.307436418 0.3173496418 -0.177937506 comfortable 0.3173496418 -0.177937506 comfortable 0.3173496418 -0.177937506 comfortable 0.3173496418 -0.165521881 comfortable 0.31222984778 -0.246048212 comfortable 0.31222984778 -0.246048212 comfortable 0.31221981057 -0.24524872 comfortable 0.31221984778 -0.246048212 comfortable 0.3122198478 -0.23522599 comfortable 0.3122198478 -0.235248732 comfortable 0.3122199477 -0.2302412 comfortable 0.3322199478 -0.23102412 comfortable 0.342134904 -0.271168947 comfortable </th <th>#</th> <th>0.282550993</th> <th>0 171473036</th> <th>comfortable</th> <th></th> <th></th>	#	0.282550993	0 171473036	comfortable		
0.227518235 -0.214392642 comfortable 36 0.327518235 -0.21392642 comfortable 36 0.3249257 -0.213721941 comfortable 37 0.327436415 -0.17937506 comfortable 38 0.312410783 -0.166110339 comfortable 39 0.317354631 -0.166521881 comfortable 40 0.322269478 -0.246048212 comfortable 41 0.327272844 -0.235522599 comfortable 42 0.337191057 -0.236248732 comfortable 43 0.342134904 -0.271168947 comfortable 44 0.342134904 -0.271168947 comfortable 45 0.34203177 -0.2362584844 comfortable 46 0.342134904 -0.271168947 comfortable 47 0.332053117 -0.2365584844 comfortable 48 0.342045846 comfortable -0.2352053147	10	0.202574257	0.23013452	confortable		
0 0 21 37 0 21 37 0 21 37 21 38 21 37 21 38 21 38 37 21 38 37 21 38 38 37 37 38 39 31 31 31 31 31 31 31 31 31	즢	0.292374337	0.214303643	comfortable.		
0.307436418 0.177937566 comfortable 36 0.312430783 -0.166310039 comfortable 37 0.312430783 -0.166310039 comfortable 38 0.312430783 -0.166310039 comfortable 40 0.322269478 -0.246048212 comfortable 41 0.332216981 -0.23302412 comfortable 42 0.332216991 -0.23302412 comfortable 43 0.332181057 -0.23404732 comfortable 44 0.342134904 -0.271168947 comfortable 45 0.342134904 -0.271168947 comfortable 46 0.352053117 -0.230554846 comfortable 47 0.352053117 -0.230554846 comfortable	-	0.30349257	-0.213721991	comfortable		
0.301430763 -0.1773346 -0.17653766 30.312410783 -0.1665110396 comfortable 37.0.317354631 -0.166521881 comfortable 40.0.322266478 -0.246048212 comfortable 41.0.322266478 -0.235522599 comfortable 42.0.332216691 -0.2302412 comfortable 43.0.34214904 -0.271168947 comfortable 44.0.342134904 -0.271168947 comfortable 45.0.34208752 -0.271168947 comfortable 46.0.342134904 -0.271168947 comfortable 45.0.332053117 -0.230558454 comfortable 46.0.34216905 -0.271168983 comfortable	a	0.302436418	0 173073508	control cable		
0.3.17354631 0.168521881 comfortable 40 0.3.22269478 -0.246048212 comfortable 41 0.3222723844 -0.23522599 comfortable 42 0.332216931 -0.23302412 comfortable 43 0.332216931 -0.23302412 comfortable 43 0.332216931 -0.21302412 comfortable 44 0.342134904 -0.271168947 comfortable 45 0.342034904 -0.271168947 comfortable 46 0.352053117 -0.280658484 comfortable	%	0.313410393	-0.166110039	comfortable		
0.322208478 -0.246048212 comfortable 41 0.322272384 -0.235522599 comfortable 42 0.332216091 -0.235522599 comfortable 43 0.337191057 -0.236248732 comfortable 44 0.34214904 -0.271168947 comfortable 45 0.34214904 -0.271168947 comfortable 46 0.34205752 -0.271168947 comfortable 47 0.332053117 -0.230558484 comfortable 48 0.342058952 -0.271128983 comfortable 49 0.342064965 -0.271128983 comfortable	-	0.312354631	0 168521881	confortable.		
O. 322222844 O. 235522599 Control table 40. 322222844 -0. 235522599 Control table 42. 0. 332216991 -0. 23302412 comfortable 43. 0. 342134904 -0. 271168947 comfortable 44. 0. 342134904 -0. 2711168947 comfortable 45. 0. 342034904 -0. 2711128893 comfortable 46. 0. 352053117 -0. 2806584844 comfortable 47. 0. 352053117 -0. 2706584844 comfortable	10	0.327300478	-0.100341001	comfortable		
0.32216691 -0.2353230412 comfortable 41 0.337191057 -0.235342472 comfortable 42 0.337191057 -0.23534472 comfortable 43 0.342134904 -0.271168947 comfortable 44 0.342134904 -0.271128893 comfortable 45 0.3423477 comfortable comfortable 46 0.3420478752 -0.271128893 comfortable 47 0.352053117 -0.270558484 comfortable 48 0.352053117 -0.270559484 comfortable	11	0.0000000000	0.235622500	confortable		
0.337191057 -0.236248732 comfortable 44 0.347194057 -0.271168947 comfortable 45 0.34708752 -0.2711128983 comfortable 46 0.34204904 -0.2711128983 comfortable 47 0.352053117 -0.280584844 comfortable 48 0.34204904 -0.271128983 comfortable 49 0.352053117 -0.280584844 comfortable 49 0.360684844 comfortable -0.271128983 comfortable	꿁	0.337216691	0.23302412	comfortable		
44 0.342134904 -0.271168947 comfortable 45 0.347078752 -0.271168947 comfortable 45 0.352053117 -0.280658444 comfortable 46 0.352053117 -0.280658444 comfortable 47 0.352053117 -0.280658444 comfortable	10	0.332561057	-0.236349333	comfortable		
45 0.3470/8752 -0.271128893 comfortable 46 0.352053117 -0.280558484 comfortable 0.352053117 -0.280558484 comfortable	-	0 342134034	0 221168047	comfortable		
40 0.352053177 -0.280658484 comfortable	10	0.343079253	-0.371120993	comfortable		
7 Protograf 0 31323/143 counterful	44	0 352053112	0 280458484	comfortable		
	10	0.156966965	-0.313630343	comfortable.		

Acceleration Graph Along x-axis i.e.Lateral (turning) Acceleration

Figure 7: Graph generated by Phyphox app of x-axis acceleration in auto

Description:

The graph indicates the acceleration experienced during lateral motion, thus it highlights the fluctuations in speed during over-takes, lane changing and turning motion of the auto. The positive region of the graph indicates acceleration while the negative part indicates deceleration. The lines appear extremely condensed thus indicating that the number of fluctuations in lateral acceleration per second is extremely high thus the frequency of fluctuation (i.e acceleration change) is extremely high. The slopes of each peak line tends to zero thus the change in acceleration is not gradual or smooth be extremely sudden or abrupt. The graph indicates momentary extremes in acceleration which can be attributed to extremely sudden movement of the vehicle resulting in changes in its lateral acceleration i.e. swerving or jerk-motion. Peak values including 13.05 and 20.13 (m/s^2)

H	ome In	sert (Draw	Page	Layou	it.
Î	A. 4	Ver	rdana			10
		•				
1	Paste di	B	I 4	L + 1	田*	1 2
	×					
E1	: ;	x v	fx			
A	A	8		c	D	S.,
10.00	Time (s)	Linear Ac	celeratio	n x (m/	s^2)	
2	0.13394399	0.266180	99			
3	0.13891835	0.253737	93			
- 2-	0.1438622	0.237859	73			
- <u>-</u>	0,14880605	0.208307	74			-
-8-	0.15973436	0.287719	19.2			
1	0.153572425	0.228666	07			
a a	0.16864247	0.245587	35			
10	0.17358632	0.249750	61			
11	0.17856069	0.159703	73			
12	0.18350453	0.127164	84			
13	0.18844838	0.062189	34			
14	0.19342275	-0.05525	28			
15	0.19836659	0.035647	63			
36	0.20334096	0.153203	01			
17	0.20828481	0.103638	89			
10	0.21325917	0.047277	69			
19	0.21820302	0.026248	93			
20	0.22314687	0.062874	56			
23	0.22812123	0.062072	99			
	0.23306508	0.102067	47			
-22 -	0.23803945	0,203049				
- CC	0.24301381	0.204340	63			
	0.25293202	0.221729	28			
37	0.25287587	0.111608	15			
28	0 26281922	0.085343	12			
29	0.26779408	0.119771	96			
30	0.27273793	0.165051	22			
31	0.2777123	0.148830	18			
32	0.28265614	0.110224	01			
33	0.28759999	0.082090	114			
34	0.29257436	0.052029	63			
35	0.29751821	0.010330	HH			
36	0.30249257	0.037192	34			
37	0.30743642	0.113175	63			
	(3) (3) (3) (4) (3) (3)					

The data from the above graph was then exported to Excel where the data stamp per second was recorded individually.

Figure 8: The data of acceleration on x-axis as displayed on excel

The acceleration in the x-axis was compared with the upper limit value of 0.98 m/s^s using the 'IF' function in excel. Each data was then categorized as 'comfortable' or 'uncomfortable' based on the result of the 'IF' function. The number of 'comfortable' and 'uncomfortable' was then calculated using the 'COUNTIF' function.

Figure 9: The data of acceleration on x-axis as displayed on excel, after applying the 'IF' and 'COUNTIF' formula

do	A .		c	D	E	
1	Time (s)	Linear Acceleration x (m/s^2)	Compare	Comfortable	Uncomfortat	ole
2	0.13394399	0.266180992	comfortable	25956	39579	
3	0.13891835	0.253737927	comfortable			
4	0.1438622	0.237859726	comfortable			1.1
5	0.14880605	0.208307743	comfortable			12.
6	0.15378041	0.287719011	comfortable			
.7	0.15872426	0.218042374	comfortable			
	0.16369863	0.229666067	comfortable			
9	0.16864247	0.245587349	comfortable			
10	0.17358632	0.249750614	comfortable			
11	0.17856069	0.159703732	comfortable			
12	0.18350453	0.127164841	comfortable			
13	0.18844838	0.062189341	comfortable			
14	0.19342275	-0.05525279	comfortable			
15	0.19836659	0.035647631	comfortable			
16	0.20334096	0.153203011	comfortable			
17	0.20828481	0.103638887	comfortable			
-18	0.21325917	0.047277689	comfortable			
19	0.21820302	0.026248932	comfortable			
20	0.22314687	0.062874556	comfortable			
21	0.22812123	0.062072992	comfortable			
22	0.23306508	0.102067471	comfortable			
23	0.23803945	0.20304966	comfortable			
24	0.24301381	0.284140825	comfortable			
25	0.24795766	0.221729994	comfortable			
26	0.25293202	0.125992775	comfortable			
27	0.25787587	0.111698151	comfortable			
28	0.26281972	0.085343122	comfortable			
29	0.26779408	0.119771957	comfortable			
30	0.27273793	0.165051222	comfortable			
31	0.2777123	0.148830175	comfortable			
32	0.28265614	0.110224009	comfortable			
33	0.28759999	0.082090139	comfortable			
34	0.29257436	0.05202961	comfortable			
35	0.29751821	0.010330439	comfortable			
36	0.30249257	0.037192345	comfortable			
37	0.30743642	0.113175631	comfortable			
38	0.31241078	0.158125401	comfortable			
39	0.31735463	0.123450041	comfortable			
4.00	0.000000.00	8 0350500FF	an and a second to			

Acceleration Graph Along z-axis i.e.Vertical (upward-downward) Acceleration

Figure 10:Graph generated by Phyphox app of z-axis acceleration in auto

Description:

The acceleration along the z-axis indicates the acceleration experienced due to change in velocity during an up-down motion similar to that experienced by a passenger when traveling over a speedbump through a pot-hole or on uneven road. Thus, the major spikes in the graph can be correlated to road 'roughness'. The density of the lines uptill the 400s mark in the graph clearly indicates that the rate of change of vertical acceleration with time is extremely high, thus the passenger experience can be assumed to be 'bumpy'.

The data from the above graph was then exported to Excel where the data stamp per second was recorded individually.

Using the maximum, minimum, average and standard deviation functions in excel the following values from the data were collected and displayed to be

compared with the corresponding data from the car.

Figure 11: The data of acceleration on z-axis as displayed on excel, after applying the given functions

16	A		c	D		
1	Time (s)	Linear Acceleration z (m/s^2)	MAX	MIN	AVERAGE	STD DEV
2	0.13394399	0.11342144	21.791275	-14.379048	-0.0895124	1.75163814
	0.13891835	0.107807159				1.
4	0.1438622	0.097019196				
-5	0.14880605	0.271364212				
- 6	0.15378041	0.284996033				
7	0.15872426	0.184844971				
8	0.16369863	0.096964836				
.9	0.16864247	0.053311348				
10	0.17358632	0.11728096				
11	0.17856069	0.241724014				
12	0.18350453	0.360194206				
13	0.18844838	0.408085823				
14	0.19342275	0.357117653				
15	0.19836659	0.301018715				
16	0.20334096	0.344874382				
17	0.20828481	0.439822197				
18	0.21325917	0.519379616				
19	0.21820302	0.61690712				
20	0.22314687	0.540411949				
21	0.22812123	0.377810478				
22	0.23306508	0.142439842				
23	0.23803945	0.027339935				
24	0.24301381	0.013372421				
25	0.24795766	0.04920578				
26	0.25293202	0.107894898				
27	0.25787587	0.144371033				
28	0.26281972	0.088689804				
29	0.26779408	-0.029405594				
30	0.27273793	-0.117226601				
31	0.2777123	-0.180140495				
32	0.28265614	-0.062303047				

Car:

The car was then driven over the same route as the auto while the Phyphox app was used to record acceleration data.

Acceleration Graph Along y-axis i.e.Linear (along direction of motion) Acceleration

Figure 12: Graph generated by Phyphox app of y-axis acceleration in car

Description:

The graph indicates the acceleration experienced during lateral motion, thus it highlights the fluctuations in speed during over-takes, lane changing and turning motion of the car. The positive region of the graph indicates acceleration while the negative part indicates deceleration. The lines appear condensed but less so than the same displayed for the auto rickshaw. The general range of the graph on the acceleration axis is significantly lesser than that of the auto rickshaw graph with most readings between 5 to -5 m/s^2 in contrast to the range of 10 to -10 on the auto-rickshaw graph. This indicates that the magnitude of linear acceleration fluctuation in the car is significantly lesser than the auto rickshaw. The acceleration experienced by the passenger due to braking, gear change and slowing down and speeding up is thus significantly lesser in the car than in the auto. The graph indicates momentary extremes in acceleration which can be attributed to extremely sudden movement of the vehicle resulting in changes in its lateral acceleration i.e. swerving or jerk-motion. Peak values including 6.73 and 10.14 (m/s^2)

The data from the above graph was then exported to Excel where the data stamp per second was recorded individually.

The acceleration in the y-axis was compared with the upper limit value of 1.47 m/s^s using the 'IF' function in excel. Each data was then categorized and 'comfortable' or 'uncomfortable' based on the result of the 'IF' function. The number of 'comfortable'

and 'uncomfortable' was then calculated using the 'COUNTIF' function.

Figure 13: The data of acceleration on y-axis as displayed on excel, after applying the 'IF' and 'COUNTIF' formula

_	_		_			
1	•		c	D	E	F
1	Time (s)	Linear Acceleration y (m/s^2)	comfortable	comfortable	uncomfortab	le
2	0.00349562	0.183090355	comfortable	60008	834	
3	0.01356362	-0.06314759	comfortable		1	1.
4	0.02363162	-0.20772029	comfortable			1.1
5	0.03369963	-0.275238381	comfortable			
6	0.04376763	-0.31536753	comfortable			
7	0.05383563	-0.248682959	comfortable			
.8	0.06390363	-0.096388426	comfortable			
9	0.07397163	0.030329215	comfortable			
10	0.08403963	0.081757523	comfortable			
11	0.09410763	0.145782196	comfortable			
12	0.10417463	0.24097896	comfortable			
13	0.11424263	0.443932014	comfortable			
14	0.12431063	0.572692381	comfortable			
15	0.13437863	0.724877863	comfortable			
16	0.14444663	0.804497644	comfortable			
17	0.15451463	0.88350873	comfortable			
18	0.16458263	1.021056	comfortable			
19	0.17465063	1.252798113	comfortable			
20	0.18471863	1.502136545	comfortable			
21	0.19478663	1.68597359	comfortable			
22	0.20485463	1.697953658	comfortable			
23	0.21492263	1.823450693	comfortable			
24	0.22499063	2.018941531	comfortable			
25	0.23505863	2.033299661	comfortable			
26	0.24512663	1.890499253	comfortable			
27	0.25519463	1.74149261	comfortable			
28	0.26526263	1.685204973	comfortable			
29	0.27533063	1.59148814	comfortable			
30	0.28539863	1.382120105	comfortable			
31	0.29546663	1.122591146	comfortable			
32	0.30553463	0.893427947	comfortable			
33	0.31560263	0.679525981	comfortable			
34	0.32567063	0.377025249	comfortable			
35	0.33573863	0.077760659	comfortable			
36	0.34580663	-0.27583392	comfortable			
37	0.35587463	-0.85208287	comfortable			
38	0.36594263	-1.198603487	comfortable			
30	0 13601063	-1 373136376	confectable			

Acceleration Graph Along x-axis i.e.Lateral (turning) Acceleration

Description:

The graph indicates the acceleration experienced during lateral motion, thus it highlights the fluctuations in speed during over-takes, lane changing and turning motion of the car. The positive region of the graph indicates acceleration while the negative part indicates deceleration. The lines appear condensed yet less so than the auto rickshaw graph indicating a rate of change of acceleration with time which is less than that for auto rickshaws. Additionally the data lies primarily in the range from 5 to -5 (m/s^2) while the data for the auto had been majorly between 20 and -20 (m/s^2) Thus, it is clear that the extent of acceleration experienced while turning, changing lanes or generally in lateral motion in the car is lesser. Peak values including 8.9 and -5.7 (m/s^2)

The data from the above graph was then exported to Excel where the data stamp per second was recorded individually.

The acceleration in the x-axis was compared with the upper limit value of 0.98 m/s^s using the 'IF' function in excel. Each data was then categorized and 'comfortable' or 'uncomfortable' based on the result of the 'IF' function. The number of 'comfortable'

and 'uncomfortable' was then calculated using the 'COUNTIF' function.

Figure 15: The data of acceleration on x-axis as displayed on excel, after applying the 'IF' and 'COUNTIF' formula

_						
	A	8	c	D	E	F
1	Time (s)	Linear Acceleration x (m/s^2)	Compared	Comfortable	Uncomfortat	ste
2	0.00349562	0.619820647	comfortable	57679	3162	14
3	0.01356362	0.618528558	comfortable			
-4	0.02363162	0.477545757	comfortable			
5	0.03369963	0.383989137	comfortable			
-6	0.04376763	0.463525157	comfortable			
7	0.05383563	0.584600528	comfortable			
. 8	0.06390363	0.820488463	comfortable			
9	0.07397163	0.81084889	comfortable			
10	0.08403963	0.611661003	comfortable			
11	0.09410763	0.604751203	comfortable			
17	0.10417463	0.72576357	comfortable			
13	0.11424263	0.782772753	comfortable			
14	0.12431063	0.768724086	comfortable			
15	0.13437863	0.644213769	comfortable			
16	0.14444663	0.500223452	comfortable			
17	0.15451463	0.38404337	comfortable			
18	0.16458263	0.323607134	comfortable			
19	0.17465063	0.243035279	comfortable			
20	0.18471863	0.134875458	comfortable			
21	0.19478663	0.062421293	comfortable			
22	0.20485463	0.135255746	comfortable			
23	0.21492263	0.17786448	comfortable			
24	0.22499063	0.292429268	comfortable			
25	0.23505863	0.425971926	comfortable			
26	0.24512663	0.520298405	comfortable			
27	0.25519463	0.472743219	comfortable			
28	0.26526263	0.403647403	comfortable			
29	0.27533063	0.306789811	comfortable			
30	0.28539863	0.322339238	comfortable			
31	0.29546663	0.372647268	comfortable			
32	0.30553463	0.460957206	comfortable			
33	0.31560263	0.627033041	comfortable			
34	0.32567063	0.655032579	comfortable			
35	0.33573863	0.62064218	comfortable			
36	0.34580663	0.631022158	comfortable			
37	0.35587463	0.447515481	comfortable			
38	0.36594263	0.550656418	comfortable			
39	0.37601063	0.941869424	comfortable			
40	0.38607863	1.216957897	uncomfortab	ie:		

Acceleration Graph Along z-axis i.e.Vertical (upward-downward) Acceleration

Figure 16: Graph generated by Phyphox app of z-axis acceleration in car

Description:

The acceleration along the z-axis indicates the acceleration experienced due to change in velocity during an up-down motion similar to that experienced by a passenger when traveling over a speedbump or through a pot-hole or on uneven road. Thus, the major spikes in the graph can be correlated to road 'roughness'. Unlike the auto graph the acceleration here remains relatively constant throughout the ride with no major regions where the graph spikes higher. Additionally the majority of the readings lie between 3 to -3 (m/s^2) while in contrast the readings in the auto-rickshaw graph lie majorly between 5 and -5 (m/s^2). Peak values include 11.22 and 10.03 (m/s^2)

The data from the above graph was then exported to Excel where the data stamp per second was recorded individually.

Using the maximum, minimum, average and standard deviation functions in excel the following values from the data were collected and

4	. A.	and the second	. C		. E	.	. e	
1	Time (s)	Linear Acceleration z (m/s ⁻²)	MAX	HIN	AVERAGE	STANDARD	DEVIATION	ī
1	0.00340562	0.164648822	13.0575085	-11.182574	-0.2396611	0.94005622	2010 C	
3	0.01396362	0.004579677						
	0.02363162	-0.193230716						
5	0.03369963	0.193430572						
	0.04376763	0.664394558						
7	0.25383563	0.606365247						
	0.06390363	-0.003835773						
13	0.07397163	-0.538017515						
10	0.08403963	-0.344585685						
11	0.09432763	-0.171820402						
12	0.50417463	-0.207250652						
13	0.11434263	-0.152432019						
14	0.12431063	-0.321886298						
15	0.13437863	-0.231558511						
16	0.54644683	0.106935049						
17	0.15455463	0.490891296						
18	0.36458263	0.718245658						
19	0.17465063	0.554400629						
20	0.18471863	0.235325872						
21	0.19478663	-0.073852673						
22	0.20485463	-0.349334298						
23	0.21492263	-0.905909706						
24	0.22499063	-1.127309075						
28.	0.11004863	-0.7364d3463						

displayed to be compared with the corresponding data from the auto.

Figure 17: The data of acceleration on z-axis as displayed on excel, after applying the given functions

Analysis

		Uncomfortable	Comfortable
Auto	Linear/Longitudinal	4633	60903
Car	Acceleration	834	60008
Auto	Lateral	39579	25956
Car	Acceleration	3162	57679

The above table indicates the number of times the acceleration along x-axis(lateral) and along y-axis(linear) exceeded the threshold limits as defined in the paper. The data when exported to Excel sheets recorded each individual acceleration value for each 0.01 second and using the 'IF' function each value was compared to the threshold limits. When the value was greater than the threshold it was labeled uncomfortable and when the value was less than threshold it was labeled comfortable.

From the data above we can clearly calculate what percentage of the total readings for both auto and car come as uncomfortable.

Auto linear acceleration:

Total readings: 65,536 readings (categorized as 'comfortable'/'uncomfortable')

```
Readings categorized as uncomfortable: 4633÷65536=0.07069
```

Percentage value of 'uncomfortable': $0.07069 \times 100= 7.069\%$

Car linear acceleration:

Total readings: 60,842 readings (categorized as 'comfortable'/'uncomfortable')

Readings categorized as uncomfortable: 834÷60842= 0.01370

Percentage value of 'uncomfortable': 0.01370 × 100= 1.370%

Auto lateral acceleration:

Total readings: 65,535 readings (categorized as 'comfortable'/'uncomfortable')

Readings categorized as uncomfortable: 39579 ÷65535=0.60393

Percentage value of 'uncomfortable': 0.60393 × 100=60.393%

Car lateral acceleration:

Total readings: 60,841 readings (categorized as 'comfortable'/'uncomfortable')

Readings categorized as uncomfortable: 3162÷60841= 0.051971

Percentage value of 'uncomfortable': 0.051971× 100= 5.197%

Auto vertical acceleration:

Maximum value of acceleration: 21.79 m/s^2

Minimum value of acceleration (maximum deceleration): -14.37 m/s^2

Car vertical acceleration:

Maximum value of acceleration: 13.057 m/s^2

Minimum value of acceleration (maximum deceleration) : -11.18 m/s^2

Conclusion

The percentage of linear acceleration in a 3-wheeler auto-rickshaw that can be categorized as uncomfortable for a passenger is 7.069% which is significantly higher than that of cars which is 1.370%. Cars with a more comfortable suspension system, ABS and various other safety and comfort features show a significantly more positive trend in terms of comfort and safety. This helps emphasize the necessity of more safety and protective measures in auto rickshaws as one of the most popular last mile vehicles in India. The level of passenger discomfort in an auto-rickshaw is significantly greater than a car yet cars contain seatbelts for the purpose of securing passengers to their seats to provide greater comfort and safety, while auto-rickshaws with a lower comfort rate still have no seatbelt option for passengers.

The percentage of discomfort experienced by a passenger during lateral motion in an auto rickshaw (60.393%) is significantly higher than that in a car(5.197%), which further proves the necessity for seatbelts in auto-rickshaws to make them more safe and comfortable for passengers. Due to the lack of doors in auto rickshaws a fear of falling out significantly contributes to the public perception of autos as 'less safe' this is further backed by the data above that clearly shows that the acceleration experienced by a passenger during tuning motions in autos is very high. Thus the motion of turning in an autos already severely displaces the passenger; the lack of seatbelts further aggravates the possibility of falling out.

The maximum vertical acceleration experienced in the car in this study is 13.057 m/s^2 While on

the same route the maximum vertical acceleration in an auto rickshaw is 21.79 m/s^2 Vertical acceleration is a direct result of road 'roughness' as it records the upward and downward motion of the vehicle on the road. Thus, the vertical acceleration is also dampened based on the comfort of the suspension used. Since the suspension used in auto-rickshaws is less comfortable than that used in cars it is clear that the 'bumpy-ness' experienced in autos is greater. To help passengers feel more secure and reduce their displacement of the auto bench a seatbelt would be the ideal solution.

Therefore my research demonstrates that auto rickshaws experience significantly irregular accelerations compared to cars, which have robust suspensions and better protection. Given these jerky movements, passengers are more prone to sudden impacts, increasing the likelihood of injuries in abrupt stops or collisions. Seatbelts could mitigate these risks, providing essential restraint to reduce passenger injuries and improve comfort. Implementing seatbelts in auto rickshaws would enhance overall passenger safety, aligning with evolving public safety standards.

References

Austin, E., Aduloju, S., Peter, O., & Ebhota, W. (2015). Determination of Center of Gravity and Dynamic Stability Evaluation of a Cargo-type Tricycle. *American Journal of Mechanical Engineering*, *3*(1), 26-31.

https://www.researchgate.net/publication/273574232_Determination_of_Center_of_Gravit y_and_Dynamic_Stability_Evaluation_of_a_Cargo-type_Tricycle

Chaubey, A., Khan, A., Yusuf, S., Gupta, D., & Poojari, R. (2018). VIBRATION ANALYSYS OF AUTO RICKSHAW. *IJCRT*, 6(2), 40. https://ijcrt.org/papers/IJCRT1813660.pdf

de Winkel, K. N., Irmak, T., Happee, R., & Shyrokau, B. (2023). Standards for passenger comfort in automated vehicles: Acceleration and jerk. *Applied Ergonomics*, *106*(1), 40. https://www.sciencedirect.com/science/article/pii/S0003687022002046#abs0015

Goswami, P., Paul, A., Samsuzzaman, M., Roy, S., & Das, D. K. (2018). Awareness and practice regarding road safety among toto (e-rickshaw) drivers in Burdwan Town, West Bengal Authors. *International Journal Of Community Medicine And Public Health*, *5*(7), 40. https://www.ijcmph.com/index.php/ijcmph/article/view/3077

Government of India, M. o. R. T. a. H. (2018, October 15). *Summary of accidents and deaths trend overall*. Microsoft Power BI. Retrieved October 29, 2024, from https://app.powerbi.com/view?r=eyJrljoiMjIzMTY5MmQtNjZmZC00OTAyLTkzOGMtYWEy OWYwZDE1YjU2liwidCl6ljViN2ExMDIzLTI1ODgtNGU3Yi05MjZlLTgwYzllY2EwNWQ4OC IsImMiOjEwfQ%3D%3D

Grover, C., Knight, I., Okoro, F., Simmons, I., Couper, G., Massie, P., & Smith, B. (2018, September 12). *Final report: Automated Emergency Braking Systems: Technical requirements, costs and benefits*. CIRCABC. Retrieved October 29, 2024, from

https://circabc.europa.eu/sd/a/3ab87fdc-5715-4733-af50-c3608034ca56/report_aebs_en. pdf

- Hoberock, L. L. (1976, July 2). A SURVEY OF LONGITUDINAL ACCELERATION COMFORT STUDIES IN GROUND TRANSPORTATION VEHICLES. A Survey of Longitudinal Acceleration Comfort Studies in Ground Transportation Vehicles. Retrieved October 29, 2024, from https://repositories.lib.utexas.edu/server/api/core/bitstreams/092722d7-3758-4b21-ac42-6444a9469376/content
- Hovorun, T. P., Berladir, K., I, P. V., & G, R. S. (2017). Modern materials for automotive industry. *JOURNAL OF ENGINEERING SCIENCES*, *4*(2), 40.
- Priye, S., & Manoj, M. (2020). Passengers' perceptions of safety in paratransit in the context of three-wheeled electric rickshaws in urban India. *Safety Science*, *124*(104591), 40.
 https://www.sciencedirect.com/science/article/pii/S0925753519322027
- Qasem, G. A. A., & Abdullah, M. F. (2024). Anti-Lock Braking Systems: A Comparative Study of Control Strategies and Their Impact on Vehicle Safety. *International Research Journal of Innovations in Engineering and Technology*, 8(9), 40.

https://irjiet.com/common_src/article_file/1726564583_a2d09483cb_8_irjiet.pdf

Shirinzadeh, B., Chen, G., James, M. N., & Pasternak, E. G. (2009). Leaf Springs. *ScienceDirect*, *4*(2), 40.

https://www.sciencedirect.com/topics/engineering/leaf-springs#definition

Shrivastva, P. K., S, V. B., Ahmed, S., & Vrushabhendra, C. (2019). Double Wishbone Suspension System; A Research. *IJRTE*, *8*(2), 40.

https://www.researchgate.net/publication/334881551_Double_Wishbone_Suspension_Sy stem A Research

Staacks, S., Dorsel, D., Hütz, S., Stallmach, F., Splith, T., Heinke, H., & Stampfer, C. (2022).
Collaborative smartphone experiments for large audiences with phyphox. *European Journal of Physics*, *43*(5), 40.

https://iopscience.iop.org/article/10.1088/1361-6404/ac7830

Tevema. (2024). What Are the 2 Most Common Types of Suspension Systems? - Technische veren specialist. Tevema.com. Retrieved October 29, 2024, from

https://www.tevema.com/what-are-the-2-most-common-types-of-suspension-systems/

The Economic Times, E. A. (2019, November 12). *Toyota Innova Crysta Specifications*. ET Auto. Retrieved October 29, 2024, from

https://auto.economictimes.indiatimes.com/cars/toyota-innova-crysta/specs/2-7-gx-at-8s

- Transport Research Wing of the Ministry of Road Transport and Highways. (2019, September 25). *Road Accidednts in India 2018.cdr*. Ministry of Road Transport and Highways. Retrieved October 29, 2024, from https://morth.nic.in/sites/default/files/Road Accidednt.pdf
- Wang, C. (2020, September 18). Research on the Comfort of Vehicle Passengers Considering the Vehicle Motion State and Passenger Physiological Characteristics: Improving the Passenger Comfort of Autonomous Vehicles. MDPI. Retrieved October 29, 2024, from https://www.mdpi.com/1660-4601/17/18/6821
- Wu, J., Zhang, L., & Meng, D. (2023). Ride Comfort Analysis of Seated Occupants Based on an Integrated Vehicle-Human Dynamic Model. SAE International, 1(0914), 40. https://www.sae.org/publications/technical-papers/content/2023-01-0914/preview/

Yasaroh, S., Kuswanto, H., Ramadhanti, D., & Azalia, A. (2021). Utilization of the phyphox application (physical phone experiment) to calculate the moment of inertia of hollow cylinders. *Ramadhanti, Desi & Azalia, Aisha & Ana, Hesti. (2021). Utilization of the phyphox application (physical phone experiment) to calculate the moment of inertia of hollow cylinders. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 10(2), 40.*https://www.researchgate.net/publication/357567932_Utilization_of_the_phyphox_applica tion_physical_phone_experiment_to_calculate_the_moment_of_inertia_of_hollow_cylinders