Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Identifying Plant Diseases with Image Recognition
Ayan Saini

Abstract:
Worldwide, approximately 70-80% of plants suffer from some sort of plant disease [1]. These
diseases ravage through billions of dollars worth of crops and thousands of tons of food,
causing devastation to local economies and increasing food insecurity throughout the globe.
However, the use of Al technology can help combat plant diseases by early recognition of
diseases through image recognition. This study employs a convolutional neural network (CNN),
implemented in Python, which is trained on the “New Plant Disease Dataset,” published on
Kaggle, to classify different plant diseases [2]. We used a subset of this dataset across three
folders. The training folder had ~16,000 images, the validation folder had 3813 images and the
testing folder had 1673 images. There were 8 unique labels on which the model was trained on.
The images are of healthy and infected leaves of these crops. The trained model achieved an
accuracy of 89.73% in testing but achieved 96.73% accuracy when tested against the validation
folder in the training process. Importantly, the classification was not a binary prediction of
healthy versus infected plants, but classified the specific crop and specific type of disease.
Interestingly, most of the misclassification was between healthy versions of different crops, and
the model was even more powerful when considering just its ability to predict diseases. This
study highlights the potential use of CNNs in automated disease detection. Thus, the use of Al
methods can contribute towards mitigation of agricultural losses and enhanced food security.

Introduction:

Plant diseases can pose a significant threat to global agricultural infrastructure. Up to 80% of
crops suffer from some sort of disease, causing substantial economic loss and food insecurity
worldwide [1]. In recent years, advancements in artificial intelligence, particularly convolutional
neural networks (CNNs), have shown promising results in automated image recognition tasks
[3]. This study attempts to employ the use CNN models in the detection and classification of
plant diseases, aiming to reduce food insecurity and improve management strategies.

The purpose of this project was to demonstrate the capabilities that CNN models have and the
benefits it can provide to society. Through image recognition, crop disease identification will
become easier, allowing farmers to accurately diagnose their crops. The use of CNN models
can help to mitigate the economic and nutritional impacts of plant diseases, thereby bolstering
global food security efforts.

In conclusion, this study demonstrates the transformative impact of CNN models in agriculture,
highlighting their role in advancing technological solutions to mitigate the economic and
nutritional impacts of plant diseases on a global scale.

Dataset and Image Preprocessing:

This project uses the “New Plant Disease Dataset” found on Kaggle by user Samir Bhattarai
who used offline augmentation to recreate it from an original GitHub repo [2]. Due to the
limitations of computational resources, | used a subset of the full dataset including
approximately ~16,000 images in the training folder. The validation folder had 3813 images. The
testing folder had 1673 images.

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

There are eight unique labels in each - 6 diseased and 2 healthy classes: Apple___ Apple_scab,
Corn___Common_rust_, Potato____Early_blight, Potato____healthy, Tomato___Early_blight,
Tomato__ healthy, Tomato__ Tomato_Yellow_Leaf Curl_Virus, and
Apple___Cedar_apple_rust. All together, the CNN model achieved an accuracy of 89.73%,
correctly predicting 1503 out of 1673 images.

Before feeding the images into the algorithm, a preparation step must happen before doing so.
To begin, the images must be loaded and resized uniformly to 128x128 pixels as the images
come in different sizes. Then, the data must be split into an X and Y variable - this must be done
for both the training and validation folders. The data must be split in order to distinguish the
image from the label for the algorithm. The X variable is the image (the input), while the Y
variable is the label (the output). During training, the model learns to map input data (X) to the
corresponding target labels (Y). Furthermore, the pixels of the images are normalized in order
for the model to converge quicker. Next, the data augmentation is performed. Images are
shifted, rotated, zoomed, and flipped. This is so the model has more variation and a wider array
of data to learn from. The images are now ready to be fed into the model.

Methods and Models:

For this particular project, a CNN model was used. CNNs are designed to analyze and
understand visual data. The model was coded entirely on Python with Conda used as the virtual
environment. The OS, NumPy, Matplotlib, OpenCV, Sci-kit learn, and TensorFlow libraries were
used.

Model Parameters: The model has three convolutional layers, the first with 32 filters and a 3x3
kernel size, the second with 64 filters, and third with 128 filters. In between each layer, a max
pooling layer function was used in order to obtain the maximum values of each layer’s feature
map. This is to ensure any useless or unnecessary data isn’t used and slow down the process.
Next, a flatten function was used in order to turn the multidimensional output from the
convolutional and pooling layers into a 1D vector. This is crucial in order to transition from the
convolutional part of the network to the fully connected part. After the data was flattened, a
dense function was called in order to finalize the classification that was extracted by the
convolutional layers. This function had 128 neurons. This layer connects every neuron in the
previous layer to every neuron in its layer. An activation argument of “relu” was used due to its
simplicity and effectiveness. The ReLu activation function returns the input value if it is positive,
otherwise it returns zero - this helps in faster convergence during training. In order to prevent
overfitting due to the large amount of data, a dropout function was called and tuned to a 50%
dropout rate. Another dense layer was formed with 128 neurons and was used as the output
layer. An activation of softmax was used since the project required multiclass classification. The
optimizer for the compilation was “adam” and the loss function was Sparse Categorical Cross
Entropy (which is used for integer labels) because of a multiclass classification requirement. The
softmax argument converts raw output scores into probability distributions, such that the model
outputs probabilities for each class. TensorFlow is used to train the model. Using TensorFlow, a
TensorBoard log and callback variable is set up in order to save and log training metrics. The
training used a batch size of 32 and 20 epochs and took approximately one hour to complete.

Results:

Q Research Archive of
Rising Scholars (preprint)

Where bright minds share their learnings

Confusion Matrix

Apple__ Apple scab a o 1

Apple__ Cedar_apple_rust - 0 172 0 (1]
Corn___Cormmon_rust_ - +] Q (4]
@ Potato__ Early_blight - D a a
o
£
]
W
£
F Potato_ healthy - 0 1] 0 1
Tomato__ Early_blight - o 4] 0 1]
Tomato__ Tomato_Yellow_Leaf_Curl_Virus - 0 a ¢} o
Tomato___healthy - 3 a 1] 1]
i i i i
f-] L il o
o' M e 4,
a [2 =
2 " E =
< e £ w
z 8 |
[
g ¥ |3
2 | £ b
L=
2 v}
F

Predicted labels

Figure 1: Confusion Matrix for the Testing Data

[]50
160 o 1} 128
£
Apple_ | Apple_ | Corn__ | Potato | Potato
_Apple | _Cedar | Comm |__Early | _ healt
_scab | _apple [on_rust | _blight | hy
_rust
False 0.18% |0 0 0.12% | 0.12%
Positiv | (3) (2) (2)
e
False 0.36% |0.72% (O 0.06% |7.79%
Negativ | (6) (12) (1) (1)
e
True 16.24% | 10.39% | 17.57% | 10.93% | 9.66%

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Figure 1 shows a confusion matrix for the s
testing data. Out of 1675 testing samples, the Positiv | (269) (172) (291) (181) (160)

model correctly predicted 1503 images. This ©
is an accuracy of 89.73%. However, the True | 84.36% | 90.04% | 83.57% | 90.04% | 83.57%
validation data had a higher accuracy of Negativ | (1397) | (1491) | (1384) |(1491) | (1384)

96.73% after the 20th epoch. This could be e
due to overfitting. As seen above, the model
particularly had trouble distinguishing between | Precisi | 0.989 1.000 1.000 0.989 0.988

healthy potato leaves and healthy tomato on
leaves. Out of 289 healthy potato images, the
model misidentified 128 images as healthy Recall [0.978 [0.935 |1.000 [0.995 |[0.554

tomato leaves. However, the model did
exceptionally well on Corn Common Rust
disease, correctly predicting every image.
Furthermore, the table below shows the
metrics for each class.

F1 0.983 0.966 1.000 0.992 0.711
Score

Total 275 184 291 182 289
Sample
Size

As seen in the table above, most classes

have high precision and recall, resulting in

high F1 scores. Due to numerous misclassifications - mostly from several false positives from
misclassified Potato Healthy - the Tomato _ Healthy class has a low precision and a high
number of false positives. This means that a significant number of instances predicted as that
class are actually from other classes. It is over-predicting this class. On the contrary, the
Potato_ Healthy class has a good precision, but low recall, as it misidentifies healthy potato
leaves and misses them. Fundamentally, the model is accurately predicting that the healthy
leaves are not diseased. However, it struggles with differentiating between healthy leaves of
different plants.

Averaging all the metrics, the overall performance of the model can be determined. The average
for precision is 0.895, meaning the model usually is correct when predicting a positive class.
The average for recall is 0.924, meaning that the model correctly identifies actual instances of
each class, with a low rate of false negatives. With an average F1 score of 0.881, the model has
an overall balanced performance, however there is room for improvement.

Conclusion:

Although not perfect, this study successfully demonstrates the potential usage of CNN model in
agricultural disease identification. By using the “New Plant Disease Dataset” by Samir Bhattarai
on Kaggle, the CNN model achieved an 89.73% in predicting diseased crop images [2]. This
result highlights the efficacy of using CNN models in disease identification in agriculture. The
high precision and accuracy of the model underscores the viability of Al in fields such as
agriculture.

Due to limitations in computational resources, the size of the used dataset had to be reduced,
which may have impacted the model’s generalizability. Furthermore, misidentification of health
plants highlighted the need for further training with a larger number of health crop classes and

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

images. In spite of these limitations, this study successfully demonstrates the potential use of
CNN models in agricultural disease identification. By using the “New Plant Disease Dataset” by
Samir Bhattarai on Kaggle, the CNN model achieved an accuracy of 89.73% in predicting
diseased crop images [2]. This result highlights the efficacy of using CNN models in disease
identification in agriculture. The high precision and accuracy of the model underscores the
viability of Al in fields such as agriculture. Due to the model’s strong performance, the
integration of this CNN model in plant disease detection can provide farmers an effective tool to
increase crop yield and successfully identify crop diseases, reducing economic losses and
enhancing food security throughout the world.

Future Work: Further research and enhancements should focus on broadening the dataset to
include a multitude of plants and diseases. With more images and data, this tool’s
generalizability can be strengthened and can be used in the real world. Additionally, more
healthy leaf images should be added so the model can distinguish between crops’ healthy
leaves. Specifically, more testing images should be placed for the Tomato__ Healthy class.
Due to the small amount of images for this class, the overall score for that class may have been
skewed. Furthermore, exploring more advanced CNN techniques such as transfer learning
should be used to further improve this model. Continued advancements in this field will
transform the agricultural field, bolstering food security and foster more secure agriculture
systems.

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Work Cited
[1] Baleey, D., Ivanova, M., Karakozova, M., Nazaroyv, P., & Sokolova, L. (2020). Infectious Plant

Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. National Library
of Medicine, 12(3), 46-59. 10.32607/actanaturae.11026

[2] Hughes, D., & Salathé, M. (2015). An Open Access Repository of Images on Plant Health to
Enable the Development of Mobile Disease Diagnostics. arXiv, arXiv:1511.08060, 1-13.
https://arxiv.org/pdf/1511.08060

[3] Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: A
review. Plant Methods, 17(1), 22. https://doi.org/10.1186/s13007-021-00722-9

Link to code: https://github.com/revnav/ayansaini-cropclass/tree/master

