
PROOF OF A FUNCTIONAL EQUATION BY USING GRAPHS AND SET THEORY

Deniz Can KARACELEBI

Izmir Bahcesehir College 50th Year Science & Technology High School

denizcankaracelebi@gmail.com
Abstract

There are different ways to approach in solving functional equation problems in

mathematics. In this paper, Set theory and graph theory techniques, which are rarely

encountered in the solutions of typical function problems, are used to construct our

proof. At the same time, our approach differs from those commonly used problems

solved by graph theory, as the solution is reached by examining uncountable graphs

with the help of set theory.
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1.Introduction

The motivating problem for this work is the following task:

Prove that there exists a function f : R2 → Z such that for every x, y ∈ R2 with

x 6= y, then f(x) = f(y) ⇒ d(x, y) /∈ Q.
In more informal terms, the function f is going to assign colors1 to all points in the

real 2 dimensional space, and we must ensure that any 2 points that have the same

color do not have a rational distance between them.

Unlike typical function problems in which the answer is shown by example, our

proof will be grounded in a combination of graph theory and set theory. We will utilize

a theorem proven by Erdős and Hajnal(1966). In Section , we provide some important

definitions and improved explanations of lemmas and claims. In Section , we present

the main proof of the theorem ,using the definitions,claims and lemmas we provided

in Section 2. Then, in Section , we apply this theorem to the present task and discuss

why it plays such a crucial role.

2. Definitions and Lemmas

We are going to give some definitions and prove related lemmas that are

necessary for proof. We denote a graph G = 〈g,G〉 where g is the set of vertices of the
graph and G is the set of edges, each represented as a set of exactly 2 vertices.

Definition 1: Chr(G ) is the least cardinal α such that g is the union of α sets, where

no two elements of same set are connected by an edge in G.
Col(G ) is the least cardinal β such that g has a well ordering < satisfying the con-

dition that for every vertex x ∈ g, the number of those vertices y < x and {x, y} ∈ G is

less than β.

Lemma 1: For every simple graph G , Chr(G ) ≤ Col(G ).

Proof: For every vertex v ∈ g let us define a function2 f1 : G → β by transfi-

nite induction on v as: Assuming that f1(x) is defined for every x ∈ g and x < y

1There may be a countably infinite number of colors.
2We add subscripts 1-6 to the function symbols to indicate distinctions among the original function

for the problem and other helper functions. There is no order intended from the values of the subscripts

other than order of introduction in this work.
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(where the relation < denotes the well ordering of the set g, which was mentioned in

the definition of coloring number), let f1(v) = y where y is the smallest element of

β \
⋃
{f1(x) : (x < v) ∧ {x, v} ∈ G}. By smallest element, we mean the element

satisfying the relation

y ∩ (β \
⋃
{f1(x) : x < v ∧ {x, v} ∈ RG}) = ∅.

For ease of notation define, Nv to be Nv = { a : a ∈ g ∧ {a, v} ∈ G ∧ a < v}.
Define Iv to be image set of Nv under the function f1. More formally written, Iv =

{s : s ∈ β, ∃z, (z ∈ Nv ∧ f1(z) = s}. If we can prove that β/Iv is not empty, then there

exist a y such that (y ∈ β/Iv) ∧ (y ∩ β/Iv) = ∅(by Axiom of Foundation).

Suppose, for contradiction, that β/Iv = ∅ for some v.
So β ⊆ Iv ⇒ |β| ≤ |Iv|. Also all elements of Iv are an image of some element of Nv

under f1, so we know that f1 is a surjective function from Nv to Iv. This means that

|Iv| ≤ |Nv|. From the definition of the coloring number of G , we know that |Nv| < |β|,
which leads to a contradiction. So, we can conclude that β/Iv is not empty. So, such

a y exists.
Now, we show that this y is unique. Suppose, for contradiction, that there exist

another x ∈ β/Iv ∧ (x ∩ β/Iv) = ∅. We know that x 6= y and by trichotomy of ordinals,

either x ∈ y or y ∈ x. Without loss of generality, assume that y ∈ x. Also, y ∈ β/Iv
as well. From this we get y ∈ (x ∩ β/Iv) 6= ∅, which leads to a contradiction. So,

uniqueness of y is proved as well.

Now, let us define sets Mα such that for all α ∈ β,
Mα = {v : v ∈ g∧ f1(v) = α}. Since every vertex of the graph is attained to an element

of β under f1,
⋃

Mα = β. Also if a 6= b and f1(a) = f1(b) for any two vertices of the

graph, then there is not any edge between a and b in the graph G . Suppose not. Let

us say there exist two vertices on the graph such that a 6= b and f1(a) = f1(b). Without

loss of generality, assume that a < b in the well ordering of g. So, f1(b) = y such

that y ∈ β/Iv, which means f1(b) 6∈ Iv. On the other hand, a < b ∧ (a, b) ∈ G, so
a ∈ Nv ⇒ f(a) ∈ Iv. This contradicts the fact that f1(a) = f1(b).

The partition of g into the sets Mα such that α ∈ β satisfies the condition that every

set of the partition does not contain any two elements that have an edge between them.

This means the set g is partitioned in to |β| sets that satisfy the condition of chromatic

number property meaning that

Chr(G ) ≤ Col(β). �

Note: In the remaining partof the proof, we will denote the cardinality of the vertex

set of the graph by alpha. Meaning that |g| = α. Also we are going to deal with graphs

that have the property that|g| = α ≥ |ω| ,(α denotes set g’s cardinality) where |ω|(ℵ0) is
the cardinality of the natural numbers. Although this property will not be used in all of

the remaining lemmas, it will be applied in some of them. For instance, in the proof of

Lemma 3, we mentioned about an ordinal ξ < α and also mentioned ξ + 1 as well.(+
sign is used to denote ordinal addition) But ξ + 1 < α satisfies for all ξ < α if only if α
is an infinite cardinal. Here, we have indirectly utilized this property.

Definition 2: Let us define v(x, g′,G ) to be the set of neighbors of x located in a

derived subgraph of G defined by the vertices g′. And let |v(x, g′,G )| = γ(x, g′,G ).A
subset g′ ⊆ g is said to be τ -closed in G (for a fixed cardinal number τ ) if γ(x, g′,G ) ≥ τ
implies x ∈ g′, for any x ∈ g.
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Claim 1: The intersection of any number of τ -closed subsets is again a τ -closed
subset.

Proof: Suppose, for contradiction, that this is not the case. Let us call S an inter-

section of some τ -closed sets in G that is not τ -closed. Then for S, there exists an

element x ∈ g such that x 6∈ S and γ(x, S,G ) ≥ τ . Since S is the intersection of some

τ -closed subsets, there exists a τ -closed subset M such that x 6∈ M and S ⊆ M . On

the other hand, γ(x, S,G ) ≥ τ implies γ(x,M,G ) ≥ τ as well. This contradicts the fact

that M is τ -closed. �

Considering the fact that g itself is τ -closed for any τ and also Claim 1, for every

g′ ⊆ g there exists a minimal τ -closed subset containing g′. This will be called τ -closure
of g′ in G and it will be denoted by Clos(g′,G , τ).
It is also worth noting that because |g| = Card(g) = α, there exists a bijective function

from elements of g to α. Call this function f2. Now, we are going to well-order the

elements of g as follows: For the previously mentioned function f2 : g → α, and for any
two different x, y ∈ g , x < y ⇔ f2(x) < f2(y).(Also we are going to use this function
f2 and its property in the proof of Lemma 2 as well.)

Definition 3:We are going to define a sequence gξ, for ξ < α of subsets of g by

transfinite induction on ξ as follows: Assume gζ is defined for every ζ < ξ for some

ξ < α. Put hξ =
⋃
ζ<ξ

gζ . If hξ = g put gξ = ∅. If g/hξ 6= ∅, let xξ to be the least element of

g/hξ in the well ordering and put gξ = Clos(hξ ∪ {xξ},G , τ)/hξ.

Lemma 2: The sequence gξ, ξ < α is disjointed and g =
⋃
ξ<α

gζ .

Proof: First we are going prove that the sequence is disjointed. Suppose, for con-

tradiction, that for any two different ξ, ζ < α that gξ and gζ have an element in common.

WLOG assume that ζ < ξ, from the definition we know that either gξ = ∅ or gξ ∩hξ = ∅.
In both cases gξ ∩ hξ = ∅. Since ζ < ξ, gζ ⊆ hξ. So gξ ∩ gζ = ∅, which leads to a

contradiction. Therefore, the sequence must be disjointed.

For the second part, we are going to show that f2(xβ) ≥ β, where f2 is the previously

mentioned function from g to α that was used to well order the set g. We are going to

use transfinite induction on β to prove this claim. The base case is trivial because the

empty set is always a subset of any set. So we need to prove that if for any ordinal

ζ < β, f2(xζ) ≥ ζ implies f2(xβ) ≥ β.
First we need to show that xβ > xζ , for any ζ < β. Suppose, for contradiction, that

there exist a ζ such that xβ ≤ xζ . We know that xβ 6∈ hβ. This implies that xβ 6∈ hε

for any ε < β. Now, xζ needs to be the least element of g that is not in hζ . But we

also know that xβ 6∈ hζ as well. So this leads to xζ ≤ xβ. From the contradiction sup-

position, we also know that xζ ≥ xβ. So xζ = xβ. But this gives a contradiction from

the disjointedness property of the sequence. We can conclude that xβ > xζ , for any

ζ < β. Which also means f2(xβ) > f2(xζ), for any ζ < β. Also from induction hypoth-

esis f2(xβ) > f2(xζ) ≥ ζ. So, f2(xβ) is an ordinal such that ζ < β implies f2(xβ) > ζ.
This itself is sufficient to show that f2(xβ) ≥ β. Now take any element v ∈ g and call

f2(v) = ζ. Now, take a ξ < α such that ζ < ξ. (This is possible since α is an infinite

cardinal) f2(xξ) ≥ ξ meaning that for any vertex of the graph y, if f2(y) < ξ then y ∈ hξ.
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Since f2(v) = ζ < ξ this means v ∈ hξ. This result suggests that every element of g is
also in

⋃
gξ (ξ < α). The opposite is true as well. From this we conclude that g =

⋃
gξ

(ξ < α). �

Lemma 3: Assume x ∈ gξ, ξ < α. Then,
γ(x, hξ,G ) ≤ τ if τ ≥ |ω|,
γ(x, hξ,G ) < τ if τ < |ω|.

Proof: For every ξ < α, gξ = hξ+1/hξ as well.(+ is used to denote ordinal addi-

tion).Since ξ + 1 = ξ ∪ {ξ}. This means hξ+1 = hξ ∪ gξ. Also hξ+1 is always τ -closed.
Since gξ = Clos(hξ∪{xξ},G , τ)/hξ, hξ+1 = Clos(hξ∪{xξ},G , τ) andClos(hξ∪{xξ},G , τ)
is τ -closed by definition. Also γ(x, hξ+1,G ) < τ for every ξ < α, x ∈ gζ provided

that ξ < ζ. That is because the sequence gξ is disjointed. So, if x ∈ gζ such that

ξ < ζ, x 6∈ hξ+1 = hξ ∪ gξ and also hξ+1 is always τ -closed. So, x 6∈ hξ+1 im-

plies γ(x, hξ+1,G ) < τ . We want to show that γ(x, hξ,G ) ≤
⋃
ζ<ξ

γ(x, hζ+1,G ). Equiv-

alently, v(x, hξ,G ) ≤
⋃
ζ<ξ

v(x, hζ+1,G ). For every a ∈ hξ for some ζ < ξ, a ∈ gζ . Also

gζ ⊆ hζ+1, so every element of v(x, gζ ,G ) is also an element of v(x, hζ+1,G ). That is why
v(x, hξ,G ) ⊆

⋃
ζ<ξ

v(x, hζ+1,G ). This leads to the desired result. Since γ(x, hξ+1,G ) < τ

for every ζ < ξ, the union of the increasing sequence of cardinals < τ is ≤ τ if τ is

infinite and is < τ if τ < |ω|. �

Claim 2: Assume H to be a set of sets. Suppose any a ∈ H , |a| ≤ κ for a cardinal

number κ and |H| ≤ α then |
⋃
a∈H

a| ≤ |κ× α|.

Proof: We are going to prove the desired result by saying that there exist a surjec-

tive function from a subset of κ × α to
⋃
a∈H

a. For all sets a ∈ H, we use the function

f3 ,which is a bijection from set H to a cardinal β ≤ α,to denote every a with a unique

f3(a) ≤ α. ( Existince of such function is true since |H| ≤ |α|).Again, we denote every

element x of a(an element ofH) by a function ga ,which is a bijection from a to a cardinal
λ ≤ κ , as a unique ga(x) for an ga(x) ≤ κ .At last, we denote each element of

⋃
a∈H

a as

follows :

For every x such that x ∈ a for a ∈ H.We denote x to be (ga(x), f3(a)) .This is a injective
function from |

⋃
a∈H

a to κ×α. This is also equivalent to say that there exist a surjective

function from a subset of κ× α to
⋃
a∈H

a. We can conclude that |
⋃
a∈H

a| ≤ |κ× α|. Also

if any of κ, α is an infinite cardinal, |κ× α| = max(κ, α). �

Definition 4: For any cardinal κ ,κ+ is the least cardinal greater than κ.

Lemma 4: Assume g′ ⊆ g , |g′| ≤ κ , |ω| ≤ κ and τ < |ω|. (We denote g to be

the vertex set of G ). If graph G doesn’t contain a complete bipartite graph [κ+, δ] for
a δ < τ . Then |Clos(g′,G , τ)| ≤ κ.(By complete bipartite graph [γ, δ], we mean there

exist two sets A,B such that |γ| = A and |δ| = B and for every a ∈ A, b ∈ B there exist

an edge between a and b({a, b} ∈ G))
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Proof: We define a sequence Aξ , for ξ < ω of subsets of g by transfinite induction

on ξ as follows.
Assume Aζ , is defined for every ζ < ξ for some ξ < ω .Put Bξ = g′ ∪

⋃
ζ<ξ

Aζ and

Aξ = {x ∈ g \Bξ : τ(x,Bξ,G ) ≥ τ}.
We are going to prove by transfinite induction on ξ that |Aξ| ≤ κ for every ξ ≤ ω. As-
sume that the induction hypothesis is true for every ζ < ξ for some ξ ≤ ω. Suppose
contrary that |Aξ| ≥ κ+. Our first observation will be that |Bξ| ≤ κ. By using both

the induction hypothesis and Claim 2 , |
⋃
ζ<ξ

Aζ | ≤ |κ × ω| = κ. Also |g′| ≤ κ , so

Bξ = g′ ∪
⋃
ζ<ξ

Aζ leads to |Bξ| ≤ κ.

Let’s call Mξ = {x|x ⊆ Bξ, |x| = τ} , our first step is to prove that |Mξ| ≤ κ. If Mξ is a

finite set , then the number subset ofMξ is also finite which is obviously < κ. Suppose
|Mξ| = α ≥ |ω| , it is known a fact that any infinite set’s finite cartesian product’s is

equal to sets cardinality. Which means |Mξ| ≤ |Bτ
ξ | = |Bξ| ≤ κ.( where Bτ

ξ means

the τ times cartesian product of the set Bξ). After this step, for every x ∈ Aξ , we

choose a subset of v(x,Bξ,G ), such that these subset Sx satisfies the property that

Sx ⊆ v(x,Bξ,G ), |Sx| = τ .(There exist such set because v(x,Bξ,G ) ≥ τ from the def-

inition of Aξ). Now, we define a function f4 from Aξ to Mξ , such that for any x ∈ Aξ,

f4(x) = Sx . For every y ∈ Mξ , Let f
−1
4 (y) = {x : x ∈ Aξ, f4(x) = y}. We are going

to prove that there exist such y ∈ Mξ such that |f−1
4 (y)| ≥ κ+ . If not , then for all

y ∈ Mξ |f−1
4 (y)| ≤ κ. Under the function f4 every element of Aξ has its image inMξ. So

,
⋃

y∈Mξ

f−1
4 (y) = Aξ. Using Claim 2 we can see that |Aξ| = |

⋃
y∈Mξ

f−1
4 (y)| ≤ |κ × κ| ≤ κ.

But this contradicts with the assumption that we made before. So there needs to exist

a y ∈ Mξ such that |f−1
4 (y)| ≥ κ+. On the other hand, This means that at least κ+ ele-

ments in the Aξ all have edges to a subset of Bξ with τ elements. Also Aξ∩Bξ = ∅.This
means there exist a complete bipartite [κ+, τ ] in G . This fact contradicts with condition

in the Lemma. Because of this reasons, we can conclude that |Aξ| ≤ κ. Thus, induc-
tion hypothesis is true for every ξ ≤ ω.
For the last part of the proof, we are going to show that Bω is both τ − closed and

|Bω| ≤ κ. Second one is easier to prove . Bω =
⋃
ζ<ω

Aζ also |Aζ | ≤ κ for every ζ < ω.

Again using Claim 2 we can conclude that |Bω| = |
⋃
ζ<ω

Aζ | ≤ |κ × ω| = κ. Now, we

going to prove Bω is τ − closed. If x ∈ g \ Bω then v(x,Bω,G ) =
⋃
ζ<ω

v(x,Bξ,G ) and

τ(x,Bξ,G ) < τ for every ζ < ω. Considering that τ is finite and ω is infinite and regular

it follows that there is a ξ0 < ω such that τ(x,Bξ0 ,G ) = τ(x,Bω,G ) < τ. It follows that

Clos(g′,G , τ) ⊆ Bω and thus lemma is proven. �

Lemma 5: Assume |ω| ≤ β and τ < β. If Col(gξ) ≤ β for every ξ < α, then Col(G ) ≤ β.
For every ξ < α let <ξ be the well ordering that satisfies the property of Col(G ) =

δ ≤ β. If x, y ∈ g let x < y if only if x ∈ gζ , y ∈ gξ and either ζ < ξ or (ζ = ξ and x <ξ y).
By Lemma 1 < is a well ordering of g. For every y ∈ gξ, v(y, g| < y,G ) = v(y, hξ,G ) ∪
v(y, gξ| <ξ y,G ). It follows from Lemma 2 that |v(y, g| < y,G )| < |τ+ ∪ β = β|. This is
because β is an infinite cardinal and τ+ ≤ β, so < is a β-coloring of g. �

Definition 5: Let G be a graph and g denote its set of vertices and G denotes its

set of edges. Let us call |g| = α. The relation Col(α, β, γ, δ) is said to hold for if every
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graph G , |g| = α and Col(G ) > β implies that G contain a complete bipartite graph

[γ, δ]. Also, the relation Chr(α, β, γ, δ) is said to hold if for every graph G , |g| = α and

Chr(G ) > β implies that G contains a complete bipartite graph [γ, δ].

3.Proof of the Theorem

Theorem: Assume Chr(G ) > β ≥ |ω|. Then the relation Chr(α, β, β+, δ) is satis-

fied if δ < ω.

Claim 3: Col(α, β, γ, δ) implies Chr(α, β, γ, δ).
This is a direct result of Lemma 1. That’s because if Chr(G ) > β then Col(G ) ≥
Chr(G ) > β.

Main Proof: We prove the theorem by transfinite induction on α. If |g| ≤ β then

Col(G ) ≤ β. That is why Col(α′, β, γ, δ) holds for every α′ ≤ α and for every γ, δ. As-
sume that α > β and Col(α′, β, β+, δ) holds for every α′ < α and assume that G is a

graph with |g| = α. We want to prove that if Col(G ) > β then this graph contains a

bipartite graph [β+, δ]. For this graph we are going to consider the sets gξ that were
defined in Definition 3. We choose τ to be δ+, since the value of τ was left open to be

any cardinal.

We want to prove that |gξ| < α for every ξ < α. To prove this, we will prove a stronger

statement by transfinite induction.

Lemma 6: |hξ| ≤ max(β, |ξ|) for every ξ < α (where max(κ, λ) denotes the bigger

cardinal number between κ, λ).

Proof: As previously said, we are going to use transfinite induction. Assume that

the lemma is true for every ζ < ξ for some ξ < α. We want to show that the lemma is

true for hξ as well. We are going to consider two cases.

i) ξ is a limit ordinal.

hξ =
⋃
ζ<ξ

hζ . It can be seen that a ∈ hζ ,for any ζ < ξ implies that a ∈
⋃
ζ<ξ

gζ as well.

Also since ξ is an infinite cardinal, if ζ < ξ then ζ + 1 < ξ satisfies as well. This
suggest that

⋃
ζ<ξ

hζ =
⋃
ζ<ξ

hζ+1 ⊇
⋃
ζ<ξ

gζ . Combining this and above result we can

conclude that
⋃
ζ<ξ

gζ =
⋃
ζ<ξ

hζ . For this case of the proof we are going to consider

two different cases.

i1)|ξ| ≥ β
We are going to show that |

⋃
ζ<ξ

gζ | ≤ |ξ| , from the induction hypothesis we know

that |hζ | ≤ |ξ| for every ζ < ξ . It is easy to see that |gζ | ≤ |ξ| is also true for all

ζ < ξ. Using Claim 2 , we know that |
⋃
ζ<ξ

gζ | ≤ |ξ × ξ|. Since ξ ≥ β ≥ |ω|,|ξ| is an

infinite cardinal. So, |ξ × ξ| = ||ξ| × |ξ|| = |ξ|

i2) β > |ξ|
We are going to show that |

⋃
ζ<ξ

gζ | ≤ |β| , from the induction hypothesis we know

that |hζ | ≤ |β| for every ζ < ξ . It is easy to see that |gζ | ≤ |β| is also true
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for all ζ < ξ. Using Claim 2 , we know that |
⋃
ζ<ξ

gζ | ≤ |ξ × β|. Since, β > ξ ,

|β×β| ≤ |ξ×β|.Again using the fact that if β ≥ ω , then |β×β| = β ; we conclude

that |
⋃
ζ<ξ

gζ | ≤ |β|. �

ii) ξ is a successor ordinal.

For this case, suppose ξ = ζ+1. Then by Lemma 3, Clos(hζ ∪{xζ},G , τ) = hζ+1.

From the induction hypothesis, hζ ≤ max(β, |ζ|). If |hζ | is finite, then |hζ ∪ {xζ}|
is finite as well. If |hζ | is infinite, then |hζ | = |hζ ∪ {xζ}|. In both the finite and

infinite cases, |hζ ∪ {xζ}| ≤ max(β, |ζ|) ≤ max(β, |ξ|). Let max(β, |ξ|) = γ. Then,
γ ≥ |ω|. It follows from Lemma 4 that |hξ| ≤ γ.

Therefore, |hξ| ≤ max(β, |ξ|) for every ξ < α. �
It is trivial to see that Lemma 6 implies that |gξ| < α for every ξ < α. Suppose

that our graph does not contain any complete bipartite graph [β+, γ]. By considering

the contrapositive of the desired statement at the beginning of this main proof, we can

finish by showing that Col(G ) ≤ β. If the entire graph does not contain any complete bi-

partite graph [β+, γ], no subgraph G (gξ) contains one as well. It follows from the main

induction hypothesis that Col(G (gξ)) ≤ β for every ξ < α. Considering the fact that

β ≥ |ω| > τ , Lemma 5 implies that Col(G ) ≤ β . Hence, we get a contradiction with

our assumption that Col(G ) ≥ Chr(G ) > β . Thus, theorem is true.

4.Application of the Theorem

In the proof above we suggested that if the chromatic number of a graph is not

countable.(> |ω|) .Then there exist a complete bipartite graph of [a, |ω|+] for every fi-

nite cardinal a. But how does this relate to our function problem ?

To understand this relation we need to interpret our problem in to graph theory lan-

guage . We denote our vertex set g of our graph to be the points in the 2 dimensional

real space. Meaning that g = {(x, y) : x, y ∈ R} and our edge relation Rg will be ’two

different points in g have an edge between them if only if they have a rational distance

between them . Meaning that {a, b} ∈ Rg ⇔ a 6= b ∧ d(a, b) ∈ Q. (as usual d(a, b) de-
notes the Euclidean distance between the points a, b in 2 dimensional euclidean space

). Let’s call this graph G. .Now it starts make sense to look whether our graph’s chro-

matic number is countable or not. Now, our first step in the second part of the proof will

prove that Chr(G) ≤ |ω| . Suppose contrary, then Chr(G) > |ω| and from the theorem

we proved we know that our graph G contains a complete bipartite graph [a, |ω|+] for
every finite positive integer a. We are going to prove that set of any two distinct ver-

tices’ common neighbours is countable in graph G.

Suppose we have have two distinct points in real space, call them a and b. It is a

trivial fact that any two circles with different centers may intersect at most 2 points. So,

if there is a common neighbourX of vertices a and b in our graph , then this point needs
to have a rational distance between both a and b. Also, call this common neighbour

set Ca,b. Now, we are going to define a injective function f5 from Ca,b to Q3 . For any

X ∈ Ca,b let us denote d(X, a) = qx,a and d(X, b) = qx,b . There is two different situa-

tions

i) The circle with center a and radius qx,a and the circle with center b and radius qx,b
intersect at exactly one point.

In this situation let f5(X) = (qx,a, qx,b,−1). (It is trivial that (qx,a, qx,b,−1) ∈ Q3
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ii) The circle with center a and radius qx,a and the circle with center b and radius qx,b
intersect at exactly two points.

In this case, these two points are reflections of each other with respect to line A, mean-

ing they are on opposite sides of this line. Call one side as S1 and other as S2. IfX ∈ S1

then let f5(X) = (qx,a, qx,b,−1) and if X ∈ S2 then let f5(X) = (qx,a, qx,b,−2).
It can be seen that every element in Ca,b has a unique correspondence in the set Q3

under f5. This means that |Ca,b| ≤ |Q3|. Also Q3 is a countable set. Thus, we conclude

that |Ca,b| ≤ |ω|. This suggest that any two vertices in our graph may have at most |ω|
common neighbour which contradicts the existence of the complete graph [|ω|+, a] for
a ≤ 2. Hence, Chr(G)| ≤ ω|.

Finally, we arrive to the last part of proof. We are going to use Chr(G) ≤ |ω| to fin-

ish the proof. By definition Chr(G) is the least cardinal such that g is the union a sets

,where no two elements of same set are connected by an edge in G. Suppose that

for a such partition of g . Let Mg be the set of all sets in such partition.
⋃

S∈Mg

S = g

. Considering the fact that, Chr(G) ≤ |ω| , there is a bijective f6 function from some

subset of Z+ ( trivially |Z+| = |ω|) to the elements of Mg. Call this subset K and also

call Sk = f6(k) for every k ∈ K. So , we get
⋃

k∈K
Sk = g. (where each Sk is disjointed

from others and doesn’t include an edge in it.)

We choose our function f from R2 to Z as follows.

For every a ∈ G , a ∈ Sk for a unique k ∈ K as well. We define our function f to

f(a) = k . So we can see that if any two distinct elements have a same image under

f , this means they belong to same Sk meaning that they don’t have an edge in com-

mon. By the define of the graph G , this is equivalent to say that they have an irrational

distance between them. So existence of a such function is true. �
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