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Abstract
Specific language impairment, also known as SLI, is a pediatric language disorder that delays
the development of typical speech functions without the influence of other developmental delays
or neurological disorders. SLI prevents children from clearly communicating their thoughts or
desires with others and can persist throughout their lives if left undiagnosed. With the ability to
provide scalable diagnostic services in the comfort of one’s home, machine learning solutions
offer the potential for an accessible screening method for SLI, enabling a parent or guardian to
identify potential markers and consult with a speech and language therapist about clinical
actions. To address this opportunity, I developed a machine-learning solution to classify SLI
based on audio and language features derived from the Talkbank Collection of the CHILDES
dataset. I applied feature selection to identify the most salient features using top-ranked
gradient-boosting features, logistic regression coefficients, and mutual information scores. The
gradient-boosting classifier outperformed the other two methods, achieving 85% average
accuracy, 85% average precision, and 83% average recall. The top features across the three
feature selection strategies were the z-score of mean utterance length, age, perplexity of 1-gram
SLI, word types to word token ratio, number of nouns followed immediately by a verb,
flesch–kincaid score, repetitions, possessives, and the z-score of word errors. Of note, the
flesch-kincaid score and perplexity of n-gram sequences, while not new, are relatively
understudied features in SLI analysis and would benefit from additional research. Interestingly,
prior ML studies have found these features appear in the context of other conditions, such as
mild cognitive impairment and dementia [1,2].
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Introduction and Background
Specific Language Impairment, also known as SLI, is a pediatric language disorder that delays
the development of typical speech functions without the influence of other developmental delays
or neurological disorders [3]. It prevents children from clearly communicating their thoughts or
desires with others and can persist throughout their lives if left undiagnosed [4]. Detecting SLI
early is essential to help treat and correct it [5].

The current methods of diagnosis require a trained speech-language pathologist to evaluate the
child using existing tests, which can include direct observation of the child, interviews, and
questionnaires completed by parents, guardians, or teachers, assessments of the child’s
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learning ability, and standardized language tests [6, 7]. These methods are time-consuming,
expensive, and often inaccessible, as health insurance does not always cover them. There are
currently no machine learning-based solutions available to diagnose specific language
impairments. With the ability to provide scalable diagnostic services in the comfort of one’s
home, machine learning solutions offer a potentially low-stress and accessible screening
method for SLI, allowing a guardian to consult with a speech and language therapist about
clinical actions.

To address this opportunity, I developed a machine-learning solution to classify SLI based on
audio and language features derived from the Talkbank Collection [8] of the CHILDES dataset
[9]. The Talkbank Collection consists of various subsets of narrative-based tasks, including
Conti-Ramsden 4 [10], Gillam [11], and ENNI [12]. These narrative-based tasks involve children
attempting to accomplish a wordless picture task. This choice was partly due to previous
research on the subject matter that had indicated its superiority in identifying pediatric SLI [13].
These datasets explore common and unfamiliar aspects of language, such as the number of
fillers spoken to the Flesch-Kincaid readability tests [14]. I applied feature selection to identify
the most salient features for SLI classification using top-ranked gradient-boosting features,
logistic regression coefficients, and mutual information scores. I will discuss the importance of
the top-ranked features, which can inform the development of future digital diagnostics and
therapeutics for SLI.
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Methods

Dataset
The dataset is from the Talkbank Collection [8] of the CHILDES dataset [9]. The Talkbank
Collection consists of various subsets of narrative-based tasks, including Conti-Ramsden 4 [10],
Gillam [11], and ENNI [12], which involve children attempting to accomplish a wordless picture
task. This choice was partly due to previous research on the subject matter that had indicated its
superiority in identifying pediatric SLI [13]. These datasets explore both the common and
unfamiliar aspects of linguistics, such as the number of fillers spoken to the Flesch-Kincaid
readability tests [14].

Data Processing
I pre-processed the data before training and evaluating the model's efficacy. This pre-processing
included imputation, upsampling, removing columns or groups of data, and shuffling the dataset.
I imputed all of the missing values by calculating the average value of the data points in a
column. Additionally, since the number of children with SLI was significantly less than the
number of children that were typically developing, I upsampled the data of the children with SLI
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to match the number of typically developing children. Next, I removed columns that revealed
whether the child had SLI or was typically developing and which corpus the data originated
from. Lastly, I shuffled the dataset to reduce the chance for the model to develop bias.

Machine Learning Modeling
The data is trained on the gradient boosting classifier classification model. The gradient
boosting classifier [15] achieves peak performance by optimizing a model’s weights and
reducing prediction errors [16]. The classifier builds an initial model based on the training
dataset and then builds subsequent models to rectify the errors present in the previous models.

Model Evaluation Metrics
The model was evaluated on three standard metrics [17]: accuracy, precision, and recall. I
performed five fold cross-validation, a method in which the data is split evenly into five parts or
folds. One fold is used for testing, while the other four folds are used for training. I then
calculated each metric's average accuracy, precision, recall, and error.

Feature Selection Strategy
Before feature selection [18], I discovered the classification models that yielded the highest
accuracy, precision, and recall values were the gradient-boosting classifier and logistic
regression [19]. Using the built-in methods for the feature importance of each classification
model and mutual information [20], I trained the gradient-boosting classifier on the top 15
features from each of these classification models and mutual information. I concluded the top 15
features from the gradient boosting classifier model yielded the highest accuracy, precision, and
recall.

Results
Table 1a presents the top 15 features of the gradient boosting classifier post-imputation. Table
2a presents the top 15 features of the logistic regression model post-imputation. Table 3a
presents the top 15 features of the mutual information quantity post-imputation. Tables 1b, 2b,
and 3b for each training method analyze the set of features with the logistic regression raw
coefficients. Among the three methods, nine features appear most frequently: z-score of
typically developing group's mean length utterance, age, perplexity of 1-gram SLI, word types to
word token ratio, number of nouns followed immediately by a verb, flesch–kincaid score,
repetitions, possessives, and the z-score of typically developing group's word errors. As
determined by the testing on raw data post-imputation, the gradient boosting classifier
performed the best without feature selection, cross-validation, and upscaling of data. Once
these three methods were implemented, the features selected by the gradient boosting classifier
proved to be the best performing as it scored an average accuracy of 85%, average precision of
85%, and average recall of 83% with 15 features, as seen in Figure 1. The model trained with
the top 15 features of logistic regression scored around 78% for all three metrics. When the
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model was trained with the top 15 features for mutual information, it scored around the same, as
shown in Figure 1.

Table 1a.

The feature importance of the top 15 features used for prediction according to the gradient
boosting classifier.

Feature Name Feature Importance

Z-score of typically developing group's mean
length utterance

0.25872

Word errors 0.14249

age 0.07943

age_years 0.06828

Ratio of raw to inflected verbs 0.05190

Verb utterances 0.04924

Perplexity of 3-gram SLI 0.03323

Perplexity of 1-gram TD 0.02320

Perplexity of 1-gram SLI 0.02255

Perplexity of 2-gram TD 0.02170

Mean Length of Utterance of Morphemes 0.01991

Word Types to Word Token Ratio 0.01991

Perplexity of 2-gram SLI 0.01459

Number of Nouns followed immediately by a
verb

0.01388

Flesch-Kincaid Score 0.01385
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Table 1b.
According to the logistic regression classifier, the raw coefficients of the top 15 features from the
gradient boosting classifier are sorted based on the logistic regression model’s coefficient
magnitude.

Feature Name Raw Coefficients

Ratio of raw to inflected verbs 1.60436

Mean Length of Utterance of Morphemes -0.58453

Word errors 0.52501

Verb utterances -0.42880

Z-score of typically developing group's mean
length utterance

-0.15839

Word Types to Word Token Ratio 0.12958

Flesch-Kincaid Score 0.09790

Number of Nouns followed immediately by a
verb

0.07145

Perplexity of 1-gram TD 0.07014

age 0.02244

Perplexity of 2-gram TD 0.00401

age_years 0.00187

Perplexity of 2-gram SLI 0.00099

Perplexity of 3-gram SLI -0.00073

Perplexity of 1-gram SLI -0.00025
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Table 2a.
The importance of the top 15 features used for prediction according to logistic regression.

Feature Name Feature Importance

Sample Z-score using TD group's Number of
Verb Utterances

0.81093

Sample Z-score using typically developing
group's mean length of utterance

-0.55866

Z-score of typically developing group's word
errors

0.42469

Number of Nouns followed immediately by a
verb

0.13755

regular_past_ed -0.13316

regular_3rd_person_s -0.06930

Number of plurals used 0.05679

3rd. singular nominative pronoun followed by
verb

-0.04393

possessive_s -0.03431

Number of Determinant Pronouns followed by
a Noun

0.02248

uncontractible_aux -0.02237

Mean Length of Utterance of 1st 100 words -0.01524

Number of “on” prepositions used 0.00649

Repetitions -0.00194

Index of Productive Syntax Score -0.00019
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Table 2b.
According to the logistic regression classifier, the raw coefficients of the top 15 features from the
logistic regression classifier are sorted based on the logistic regression model’s coefficient
magnitude.

Feature Name Raw Coefficients

Sample Z-score using TD group's Number of
Verb Utterances

0.81093

Sample Z-score using typically developing
group's mean length of utterance

-0.55866

Z-score of typically developing group's word
errors

0.42469

Number of Nouns followed immediately by a
verb

0.13755

regular_past_ed -0.13316

regular_3rd_person_s -0.06930

Number of plurals used 0.05679

3rd. singular nominative pronoun followed by
verb

-0.04393

possessive_s -0.03431

Number of Determinant Pronouns followed by
a Noun

0.02248

uncontractible_aux -0.02237

Mean Length of Utterance of 1st 100 words -0.01524

Number of “on” prepositions used 0.00649

Repetitions -0.00194

Index of Productive Syntax Score -0.00019

8



Table 3a.

The feature importance of the top 15 features used for prediction according to the mutual
information quantity.

Feature Name Feature Importance

Perplexity of 1-gram SLI 0.03595

Sample Z-score using typically developing
group's mean length of utterance

0.02944

Number of “in” prepositions used 0.02810

age 0.02533

Repetitions 0.02444

Number of Determinant Nouns followed by a
Personal Pronoun

0.01962

Flesch-Kincaid Score 0.01743

Pronouns followed by Auxillary Verb 0.01567

Number of Do's 0.01495

Average number of syllables per word 0.01284

present_progressive 0.01281

Word Types to Word Token Ratio 0.00943

possessive_s 0.00877

Total Number of Words 0.00863

sex 0.00668
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Table 3b.
According to the logistic regression classifier, the raw coefficients of the top 15 features from
mutual information are sorted based on the logistic regression model’s coefficient magnitude.

Feature Name Raw Coefficients

Sample Z-score using typically developing
group's mean length of utterance

0.48281

Flesch-Kincaid Score -0.31360

Number of Do's 0.24791

Number of “in” prepositions used -0.12210

Average number of syllables per word 0.05054

sex -0.03263

Repetitions 0.02738

Word Types to Word Token Ratio 0.02118

Number of Determinant Nouns followed by a
Personal Pronoun

-0.02109

possessive_s -0.01941

Pronouns followed by Auxillary Verb -0.01693

age 0.00672

Total Number of Words -0.00133

present_progressive 0.00106

Perplexity of 1-gram SLI 0.00000
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Figure 1. The average accuracy, precision, and recall metrics measured (in %) with the
corresponding number of features

Discussion and Conclusion
The top features across the three methods of feature selection were the z-score of typically
developing group's mean length utterance, age, perplexity of 1-gram SLI, word types to word
token ratio, number of nouns followed immediately by a verb, flesch–kincaid score, repetitions,
possessives, and the z-score of typically developing group's word errors. Among the features
identified through the three feature selection methods, most are common indicators of SLI,
including word errors, verb utterances, and repetitions. [21, 22, 23, 24] The flesch-kincaid score
is a common readability test administered to determine the difficulty of a text. The perplexity of
n-gram sequences is a measurement used to evaluate the performance of a natural language
processing model. It evaluates how well the model predicts the next word in the sequence. The
correlation between flesch-kincaid scores and SLI and the perplexity of n-gram sequences and
SLI can be further evaluated by researchers, as these are relatively understudied in the context
of SLI.
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A common feature identified in the gradient boosting classifier model was the perplexity score of
n-gram sequences. These n-gram sequences refer to a continuous sequence of words used for
language analysis; the perplexity score refers to the model’s ability to correctly comprehend a
sequence of words [25]. Since the gradient boosting classifier works to continuously iterate on
itself to achieve performance gains, it found that analyzing n-gram sequences less than or equal
to three words was a strong indicator of whether a pediatric patient had SLI or was typically
developing.

A common thread throughout the prevalent features in the logistic regression model was the
inclusion of different parts of speech, including plurals, possessives, verbs, and more. The
logistic regression model could distinguish between a pediatric patient’s potential for SLI or for
being typically developing by relying on the usage of each of these parts of speech. Verbs and
plurals tended to be used more frequently by typically developing pediatric patients [22, 26].

Limitations
The primary limitation of this project was the limited dataset for both training and testing. I used
the Talkbank Collection of the CHILDES dataset, which consists of data from around one
thousand unique pediatric patients. The project was also limited in variability, as the dataset
consisted of wordless picture tasks and was based on transcripts of children completing these
tasks. This limitation prevents the model from analyzing other features, including tongue and lip
movements, speech duration, stuttering, and utterance speed.

Future Work
This work can be expanded upon by incorporating a wider range of speaking tasks beyond
narrative-based tasks during the data collection phase. Example tasks can include the use of
words, conversations, and more. This will open up the possibility of discovering new methods
and features that can be used to diagnose SLI. Further, using deep neural networks can enable
the model to engineer complex nonlinear features from the dataset. Also, multimodal learning
with a multitude of input sources such as audio, text, or video inputs can make this model more
accessible by allowing the user to choose an input into the model that is most convenient for
them. Finally, using novel text and audio embeddings, as well as the wav2vec and word2vec
algorithms, can provide a solution to quantify and process speech.

List of Abbreviations
SLI (Specific Language Impairment), TD (Typically Developing)
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