
Harmonizing with machine learning: using AI as a tool to generate classical music
Joshua Min

Abstract:

Generating music using machine learning involves training algorithms on large datasets
of music to learn the underlying patterns and structures characteristic of different genres or
styles. We approached this task by initially collecting and preprocessing a diverse set of musical
pieces, which include melodies, harmonies, rhythms, and timbres. Subsequently, the machine
learning model, in this case deep neural network, was trained on this data. The trained model
learned to predict or generate new musical sequences that are stylistically similar to the input.
By adjusting parameters and refining the model, it can enhance its ability to create music that is
both novel and aesthetically pleasing. In this work, the application of various network
architectures such as recurrent neural networks (RNNs) was explored for this purpose. These
results demonstrate a proof of principle that machine learning can become a relevant tool in the
creative process, providing new avenues for musical expression and experimentation.

Introduction:

This research project aims to answer the question, “Can machine learning models
generate music in the style of different classical music composers?”. For the past hundreds of
years, sheet music, which includes the use of notations such as notes, chords, and time
signatures, has been the traditional way for musicians to read music. However, current machine
learning models have used machine learning techniques to not only read and analyze sheet
music but also create their own. This has opened up opportunities for people to use machine
learning models as a way to replicate the style of music of composers, using factors such as
how often composers “use” a certain note or key.

Machine learning is the process of training a model based on a processed training
dataset and using algorithms, allowing models to “learn” and improve. Machine learning models
can find patterns or make decisions, and are differentiated by supervised and unsupervised
learning. Supervised learning means training a model based on labeled data, and is often used
in classification and regression, while unsupervised learning means training a model based on
unlabelled data, and is often used for clustering. There are also many algorithms for machine
learning, such as linear regression, deep learning models, and neural networks.

Neural networks are a method in machine learning that processes data in a way similar to
how the brain does. In neural networks, there are layers of neurons, with neurons between each
layer being connected. The strength of these connections between these neurons is called
weights, and these weights are used to determine how important a neuron is and how much
influence that input data will have on the product that is outputted. Biases help the model be
more accurate by making translations for activation functions. The Universal Approximation
Theorem states that if a neural network has one hidden layer, it can, regardless of the
complexity of the function being approximated, represent it accurately if provided with enough
neurons within that hidden layer.

1



In the present study, we use machine learning to generate music and identify a model
that would be suitable for background music in a public space. The transformer model GPT-3
and the LSTM model Performance_RNN were used for music generation. Using the COSIATEC
algorithm and a custom tonality metric, the recurrent patterns and tonal accuracy were
evaluated. Both models effectively generated long-term musical structure, though training time
and accuracy varied with different data sets.

The model’s performance was measured on the centricity metric. The centricity metric,
which evaluates whether certain notes are more frequent than others, could indicate the quality
of music. A lower centricity value means that some notes are used more often, suggesting that
the model isn't selecting notes randomly but has learned the common harmonic patterns in
music.

Figure 1: Recreated from Rickard, E. (2022). Table 4.3: The metric evaluations on music
generated by Performance RNN for different learning rates. Generating Music using AI.
Retrieved from
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9093922&fileOId=909
3927.

2



Dataset Review:

Source Citation (APA) Data Type

#1:
This music dataset
was created by Yash
Bhaskar on Kaggle.
It contains mp3 files
of classical,
electronic, pop, and
rock music.

Bhaskar, Y. (2024, January 31). Emotify -
Emotion Classificaiton in songs.
Kaggle.
https://www.kaggle.com/datasets/yash
9439/emotify-emotion-classificaiton-in-
songs

mp3

#2:
This music dataset
was created by
Bohdan Fedorock on
Kaggle. It contains
midi files of works of
classical composers
such as Sibelius,
Tchaikovsky, and
Wagner.

Fedorak, B. (2019, January 28).
Midi_classic_music. Kaggle.
https://www.kaggle.com/datasets/bland
erbuss/midi-classic-music

midi

#3:
This music dataset
was created by
Kritanjali Jain on
Kaggle. It contains
midi files of works of
famous pop artists
such as Shawn
Mendes.

Jain, K. (2021, April 26). Music_midi_dataset.
Kaggle.
https://www.kaggle.com/datasets/kritan
jalijain/music-midi-dataset

midi

#4:
This music dataset
was created by
Chetan MJ on
Kaggle. It contains
midi files of famous
pop songs such as
“Best Day of My
Life” and “Shake It
Off.”

MJ, C. (2018, August 19). Pop music
collection. Kaggle.
https://www.kaggle.com/datasets/cheta
nmj23/pop-music-collection

midi

3



#5:
This music dataset
was created by
Soumik Rakshit on
Kaggle. It contains
midi files of classical
works by composers
such as Bach,
Brahms, Chopin,
and Mendelssohn.

Rakshit, S. (2019, May 17). Classical music
midi. Kaggle.
https://www.kaggle.com/datasets/soum
ikrakshit/classical-music-midi

midi

Methodology:

To start, Python libraries such as music21, Matplotlib, NumPy, pandas, Tensorflow,
Matplotlib, scikit-learn, seaborn, and IPython were imported. The dataset for this project was
compiled from the music datasets found on Kaggle, consisting of 48 different MIDI files of
Chopin’s music. In the Jupyter Notebook, this dataset was parsed as a music21 stream. The
corpus is created using a function that extracts the chords and notes of each MIDI file. From
there, the most frequently played notes and the least frequently played notes are identified, and
the least frequently played notes are removed from the Corpus. Throughout the dataset, these
notes that were played least frequently were so rare that some only appeared once or a couple
of times throughout the whole dataset. It can be assumed that since Chopin did not include
these notes as much,and that they either have less of significance within Chopin’s music or
Chopin did not enjoy playing these notes as much. Additionally, taking out these rare notes can
improve the model’s efficiency and accuracy as there is less computational complexity, training
times, and errors.

Then, a dictionary is created to translate musical notes into numerical representations,
so that the computer can efficiently work with these notes. The dictionary can be used to encode
and decode information using the long short-term memory (LSTM), a variant of the Recurrent
Neural Networks (RNN). Recurrent Neural Networks process sequential data, holding past
information about it. The LSTMs are able to hold sequential data and past information over long
sequences making them the perfect candidate to store the music, which includes elements of
both time and series. The musical corpus is then encoded and broken down into smaller, unique
sequences. These sequences are part of a segment of the music. The features and
corresponding targets are indexed in the dictionary. After labels and targets are adjusted,
datasets are split into two different kinds: the train and seed datasets. The seed dataset is used
as an initial input for generating sequences for the machine learning model, acting as a “starting
point.” The machine learning model uses the test dataset to see and analyze the model’s
performance and learn how well it works.

Additionally, the model also defined durations for the corresponding notes and predicted
durations, similar to the process of predicting the notes. This helped make the notes in the
songs be able to play in varied durations, such as quarter notes, eighth notes, and half notes,
allowing for potential in creating the stylistic, Romantic tunes of Chopin.

4



The model has two LSTM blocks with 512 and 256 outputs, respectively. Dropout was
added to help prevent overfitting to the training data and allowed the network to generate more
unique pieces of music. The model was finally trained with the training dataset for over 200
epochs, meaning that the machine learning model was iteratively trained over the entire training
dataset 200 times.

Finally, the model was evaluated with training loss plotted with respect to the epochs.
While ideally we would be using testing loss or validation loss, we ended up plotting this
relationship with the test data rather than the training data instead. After generating the melody,
and organizing the music back into the notes and chords list, the final MIDI file by model is
created.

Additional information regarding the materials and methods utilized by this study can be found at
the following resources:

Dataset - Google Drive Folder (Folder of Chopin MIDI Files):
→ chopin

Python Jupyter Notebook - .ipynb file (Machine Learning Model Program Code):
→ MusicMix.ipynb

ML-generated music using Chopin dataset - .mid file
→ ChopinMix.mid

Full Github Repository
→ Github Repository

Results:

The final music file was produced after 200 epochs, as a midi file, which was around 1
minute long. The piece was in C Major, at a tempo of 120 BPM, in common time. Overall, the
generated song by the model was arguably subpar in many aspects compared to many of
Chopin’s original works, mostly owed to the song’s rather one-dimensional styled melody, and
lack of lyrical nuance and sophistication that adds complexity such as chord progressions,
scales, and arpeggios. This is the result of the machine learning model only selectively picking
the notes to use based on how often they were used in Chopin’s music, which resulted in a
composition that superficially resembles Chopin's style but lacks the depth and emotional
intricacy that characterizes his true masterpieces. The chords and notes plated often did not
match in terms of harmony as well, which occasionally resulted in somewhat bizarre sounding
moments. Moreover, variation in tempo, such as rubato, as well as dynamics in Chopin’s pieces,
cannot be easily captured by an algorithm that adheres strictly to predefined patterns.

Despite some of these parts of the model’s shortcomings, the model performed quite well
in terms of its overall structure as a song. There were no instances where the song failed in
which the song failed to maintain a coherent form, and the transitions between sections were
smooth and logical, with the same tempo being maintained at all times. Additionally, the music
had its own charm in its simplicity and was overall very enjoyable to listen to. The aspect of

5

https://drive.google.com/drive/folders/1cPAm1upY_bNEDBvqDHXuIkfHHkwOdJA4?usp=sharing
https://github.com/jtymin/MusicMix/blob/main/MusicMix.ipynb
https://github.com/jtymin/MusicMix/blob/main/ChopinMix.mid
https://github.com/jtymin/MusicMix/tree/main


adding varied durations as necessary throughout the song also contributed to an engaging
listening experience that can make the song more distinctive and exciting.

Figure 2 shows the training loss plotted against epochs, to measure the performance of the
model. The model decreases gradually over the first 20 epochs before decreasing at a steady
rate until it reaches 50 epochs.

Training loss is the measure of the error between the predicted output and the true
output, with the loss curve in Figure 1. The training loss indicates the performance of the
machine learning model, with a lower training loss signifying a better performance of the model,
and a higher output accuracy.

In the context of generating the music, as this loss is being applied to both the notes and
durations of those notes, it can show how well the model is able to pick up the various nuances
and patterns from the data provided. Figure 2 demonstrates how the machine learning model is,
for the most part, improving over every iteration, with only some instances of plateaus that may
result from overfitting, which is when the model performs poorly on new data it is provided due
to becoming too familiar and tailored with the training data. This shows how 50 epochs will
generally be an optimal length to train a model to generate music with likeliness for
sophistication.

Figure 3 shows a graph of the frequency distribution of notes, indicating how frequently notes
were played, with respect to the number of chords.

6



Figure 4 demonstrates the statistics of occurrences of notes in the corpus, with the average
recurrence of all notes, most frequent note, and least frequent note in the corpus being shown.

By identifying which notes appear more often than others, it gives an important clue for
the machine learning model to use: how rare which notes are. By knowing how rare these
specific notes are, it is possible to reduce problems and errors that can be encountered by
removing some of these notes that occur the least. This removal of rare notes was done under
the assumption that composers of song would have used the notes more often if they liked it,
therefore, attempting to mirror the style that the composers would have written the song. Figure
4 demonstrates the significant contrast between the most frequently played (1627 times) and
least frequently played notes (1 time), with the average recurrence for a note being around 146,
demonstrating that there is a big enough statistical difference between the frequencies to be
able to specifically exclude some of these rare notes. In this model, we removed all notes that
were played less than 100 times, indicated for the red divider in Figure 3.

Discussion/Conclusion:

In the future, we look forward to experimenting with other models such as Transformer
models general adversarial networks (GAN) that have the potential to generate music due to
their ability to sequentially store data in their memory. By testing these various architectures and
adjusting hyperparameters, we can try to find another unique style of music that can be
generated, possibly with better performance than the RNN model. We also intend to work
towards building a model that can generate music more than just a melody, such as an
accompaniment or beats, and be able to use other instruments aside from just purely piano, so
that a wider variety of songs that use various, unique instruments can be used to train the
model, and can more accurately reproduce the music of other genres such as folk songs, and
not just classical, piano pieces. While training the machine learning model, we found that
duration produced a high accuracy, while the note values produced an accuracy comparatively
lower than that. This discrepancy suggests that while the model is proficient at learning the
timing and rhythm of the music, it struggles more with the melodic content. To address this, we
hope to continue techniques that can better capture the harmonic and melodic structure of
music.

Through this research, researching the applications of machine learning to generate
more sophisticated music is shown to be a promising endeavor. The potential for people to use
these models to continue to not only mimic the styles of any composer or genre, but to have the
potential to also combine different types of music based on the choice of users to possibly

7



create a new type of music that has yet to be heard before, makes this area of research and
innovative, revolutionary field of study.

Acknowledgments:

I would like to extend my gratitude to Eric Cheek, whose expertise and support has guided the
success of this research project.

References:

[1] Rickard, E. (2022, June 8). Generating Music using AI.
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9093922&fileOId=909
3927

8


