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Abstract
Forest fires are becoming increasingly common due to rising temperatures from global

warming. According to the National Interagency Fire Center (NIFC), in 2022, 66,225 fires in the
United States burned 7,534,403 acres of land. Data from the Global Forest Watch (GFW)
indicates that in the last 10 years, around 82 million hectares of forests have been destroyed by
wildfires worldwide. In this paper, I use a random forest classifier to predict the occurrence of a
forest fire given a set of environmental conditions (Fine Fuel Moisture Code, Duff Moisture
Code, Drought Code, Initial Spread Index, temperature, relative humidity, wind speed, rain, and
the month in which the data was collected). A random forest classifier uses an ensemble of
decision trees—which ask a series of binary questions to split the data—to determine whether a
fire is likely, and displays which factors are most important in making this decision. My model
achieves 100% accuracy in predicting whether a forest fire occurs given a set of environmental
conditions from the Algerian Forest Fires dataset, and achieves 55.78% accuracy when given
the Montesinho Forest Fires dataset. Knowing the prominent factors responsible for wildfire
formation is useful for devising measures to offset the conditions and prevent harm. In the
future, we can compare environmental data from more forests around the world to form a
holistic view of the environmental factors that cause forest fires.

Introduction
In the last 10 years, around 82 million hectares of forests have been destroyed by

wildfires worldwide [1]. Forest fires are common in hot, dry, and windy areas. They pose great
harm to infrastructure in surrounding areas and can release harmful contaminants, sediments,
and heavy metal that leach into nearby water sources [2]. Machine learning models can be used
to analyze the occurrence of these forest fires and the factors that influence their formation.
Specifically, this paper uses a random forest classifier to identify the factors which most affect
wildfire ignition in the Algerian and Montesinho forests.

Literature Review: Forest Fires
Forest fires are large, uncontrolled fires that burn in vegetation more than six feet in

height. Ground fires typically ignite in soil with thick organic matter and can last a full season.
Surface fires burn what is on the ground, such as dead leaves, parched grass, and other types
of dry vegetation. Crown fires are the biggest type of forest fire and burn tree canopies [3].
Forest fires are greatly influenced by temperature, humidity, precipitation, and wind [4]. High
temperatures cause vegetation to dry out, which provides more fuel for fires [5]. Wind increases
the supply of oxygen to the fires, which accelerates the ignition and spread of the forest fire.
Precipitation and humidity can prevent fire ignition because it dampens the fuel—the air
exchanges moisture with the dry vegetation, causing it to become more moist [6].

Forest fires have a damaging effect on wildlife and ecosystems. High severity fires can
burn tree canopies and scorch the soil and tree roots [7]. However, the effect is even greater
than destroying ecosystems. Smoke from forest fires include a mixture of toxic pollutants such
as PM2.5 (fine particulate matter), nitrogen dioxide, ozone, and lead—which contaminate the

1



air. In addition, forest fires release carbon dioxide and other greenhouse gasses into the air,
increasing the impact of climate change. With global warming leading to higher temperatures,
the risk of forest fires is increased, leading to a vicious cycle [8]. Therefore, it is important to
accurately identify the factors that lead to forest fire ignition in order to be better prepared to
combat the fires early on and devise mitigation strategies.

According to the National Interagency Fire Center, in 2022, 66,225 fires in the U.S.
burned 7,534,403 acres of land [9]. Data from the Global Forest Watch indicates that in the last
10 years, around 82 million hectares of forests have been destroyed by wildfires worldwide [10].
Climate change, which results in global warming and extended drought, has increased the risk
of forest fires in the United States over the last two decades [11]. Data from researchers at the
University of Maryland shows that between the years 2001 and 2023, the area burned by forest
fires increased by around 5.4% per year. Now, forest fires result in nearly 6 million more
hectares of tree cover loss per year than they did in 2001—an area roughly the size of Croatia
[12]. Data from the Global Fire Watch shows that fires were responsible for 74% of tree cover
loss in Algeria between 2001 and 2023 [13]. In contrast, fires were responsible for 34% of tree
cover loss in Portugal between 2001 and 2023 [14].

Literature Review: Machine Learning and Random Forest Classifier
Machine learning is the ability to train a machine to imitate human behavior. It is a subset

of artificial intelligence. There are two major types of machine learning methods—supervised
learning and unsupervised learning. Supervised learning uses labeled data to train the model.
On the other hand, learning is unsupervised when the dataset does not have output labels. This
means that the model forms clusters based on patterns identified in the data. Within supervised
learning, there can be a classification model (where the predictive variable is categorical) or a
regression model (where the predictive variable is continuous and numerical).

There are two stages when creating a supervised machine learning model—training and
testing. In the training stage, the model creates a function for which the value from that function
most closely relates to the true label of the data. In the testing stage, the function previously
created is used to predict the labels of new data. Overfitting occurs when the model too closely
adapts to the intricacies of the training data without generalizing results. The data is split into
two categories, training and testing. Some common training/testing splits are 70% training and
30% testing, 80% training and 20% testing, and 90% training and 10% testing.

A decision tree uses a series of binary questions to split the data. The questions at each
node of the decision tree are carefully selected during the training phase to split the data in the
best way possible. These same questions are then used during the testing phase on a new set
of data. A random forest is an ensemble of decision trees, all of which are used to make the final
decision. In a decision tree, each point where a decision is made is called a “decision node”.
Each terminal node is called a “leaf node”. When using a random forest algorithm, the
importance of each feature in making the final decision can be shown. Some of the benefits of
using a random forest algorithm include: accuracy for small datasets, ability to identify feature
importance, ability to handle numerical and categorical data, and ease to interpret and visualize
results. Some downsides are that random forest algorithms can create biased trees, overfit the
data, and have greedy algorithms. However, these negatives can be mitigated by using an
ensemble of trees to make the decision.
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Methods
I created a Random Forest Classifier to predict the occurrence of a forest fire. I used

methods from the pandas library in Python to clean the data, scikit-learn methods to split the
data and create the model, and matplotlib for data visualization.

I ran my model on two different labeled datasets— “Algerian Forest Fires Dataset”1 and
“Montesinho Forest Fire Prediction Dataset”2. Each dataset recorded the environmental
conditions during times of a fire and normal conditions in a different area—the Bejaia region and
Sidi Bel-abbes region in Algeria, and the Montesinho forest in Portugal. The Montesinho forest
fires dataset recorded the burn area, so I cleaned the data and sorted it into two
classes—whether a forest fire occurred or not. I used the burn area to classify the data into
these two classes and made the assumption that a “0” burn area indicated that there was no
forest fire.

I further cleaned the datasets so that they included the same environmental factors,
making it an apples-to-apples comparison. Each dataset has the following features: Fine Fuel
Moisture Code (FFMC), Duff Moisture Code (DMC), Drought Code (DC), Initial Spread Index
(ISI), temperature, relative humidity, wind speed, rain, and the month in which the data was
collected. The Fine Fuel Moisture Code is a numeric rating of the moisture content of litter and
other fine fuels such as small twigs, grasses, and ferns [15]. It indicates the relative ease of
ignition and flammability of fine fuels. The higher the FFMC, the greater the risk of a fire. The
Duff Moisture Code is a rating of the average moisture content of moderately deep loosely
compacted layers of decomposing organic matter. The Drought Code Index measures the
average moisture content of deep, compact organic layers. The Initial Spread Index is
calculated by taking the product of the Fine Fuel Moisture Code and Wind Speed. It is the
expected rate of fire spread [16].

After cleaning the data, I used scikit-learn methods to split it into training and testing sets.
For both the Algerian Forests and Montesinho region datasets, I split the data into 80% training
and 20% testing. I used the RandomizedSearchCV scikit-learn method to randomly choose
different combinations of hyperparameters. I then used the best_estimator_ method to find the
best combination of hyperparameters. This resulted in a high accuracy when the model was
trained on the Algerian Forest Fires dataset. However, since the Monteinho Forest Fires dataset
still yielded a low accuracy, I further tuned the n_estimators (number of decision trees that are
used in the random forest) hyperparameter (shown in Figure 1). After doing so, I found the
optimal hyperparameters for the Montesinho forest fires dataset. When tuning the
hyperparameters, I used accuracy as the evaluation metric. Table 1 shows the distributions I
used to tune the hyperparameters.

2 Montesinho Forest Fires Dataset: https://www.kaggle.com/datasets/elikplim/forest-fires-data-set

1 Algerian Forest Fires Dataset:
https://www.kaggle.com/datasets/sudhanshu432/algerian-forest-fires-cleaned-dataset
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Figure 1: N Estimators vs Accuracy Plot for the model trained on the Montesinho Forest Fires
Dataset.

As seen in Figure 1, when the number of estimators increases, the accuracy of the model
on the training data also increases. The number of estimators refers to the number of decision
trees in the random forest. There is a peak in the test data accuracy at around 50-60 estimators,
but this is likely due to a fluke. The accuracy of the model levels off around 300 estimators
which means including over 300 estimators will result in marginal benefits.
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Hyperparameter
Name

Description Type and
Range

Decided
Value

n_estimators The number of decision trees
in the random forest.

Integer
(50-3000)

350

max_depth The maximum depth of the
decision tree. If it is set to
none, then the nodes will
expand until all leaves are
pure (where all data in that
node belongs to a single class)
or until all leaves contain less
samples than min_samples
split.

Integer (1-20) 8

max_features The number of features to
consider when looking for the
best fit. If “sqrt” then the
features considered will be the
square root of the total
features. If “log2”, the number
of features considered will be
log2(number of features). If
“none” then all features will be
considered.

sqrt, log2, none None

oob_score Whether to test the model on
random samples of data to
estimate how well the model
generalizes to new data.

True, False True

min_samples_split The minimum number of
samples required to split an
internal node

Integer (2-10) 7

Table 1: Distributions used to tune the hyperparameters for the model trained using the
Montesinho Forest Fires dataset. The hyperparameters I tuned are “n_estimators”,

“max_depth”, “max_features”, “oob_score”, and “min_samples_split”.
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Results
The model works well on the Algerian Forest Fires dataset, with 100% accuracy. The

confusion matrix in Figure 2 shows that each piece of data is correctly classified.

Figure 2: Confusion matrix of the model trained on the Algerian Forest Fires Dataset. The
predicted label and true label matched for each piece of training data, meaning all the data was
correctly classified. Here the label “0” represents that there was no forest fire and “1” indicates

the presence of a forest fire.
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The feature importance table in Table 2 indicates that the Initial Spread Index (ISI) and
Fine Fuel Moisture Code (FFMC) have the greatest impact in making the decision for whether a
fire will occur or not. On the other hand, features such as the month in which the data was
recorded, wind speed, temperature, and relative humidity do not have a big impact on the final
decision, as seen by their low feature importance values.

Table 2: Feature importance table of model trained on the Algerian Forest Fires dataset. The
Initial Spread Index (ISI) and Fine Fuel Moisture Code (FFMC) have the greatest importance.
Features such as the month in which the data was recorded, wind speed, temperature, and
relative humidity do not have a big impact on the final decision as shown by their feature

importance values of less than .015 (or about 1.5%).
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The model was trained with 500 estimators—which means that there were 500 decision
trees in the random forest, from which the results were averaged together to determine whether
a fire would emerge given the parameters. Figure 3 shows an example of one of the 500
decision trees. The tree is simple and does not have too many layers. Near the top of the tree,
the model is making splits with decisive criteria, which split the data roughly in half. All the
leaves in the decision tree are pure.

Figure 3: Example of one decision tree from the random forest model trained on the Algerian
Forest Fires dataset. All the leaves in the decision tree are pure. The tree is simple and does not
have too many layers. Near the top of the tree, the model is making splits with good criteria,

which split the data roughly in half. All the leaves in the decision tree are pure.
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In contrast, the model has a much lower accuracy for the Montesinho Forest Fires
dataset. After hyperparameter tuning (shown in Figure 1), the model achieves an accuracy of
55.78%. The confusion matrix in Figure 4 shows that the model is not good at predicting when
the true label for the data is “0”, meaning that the conditions would not cause a forest fire. As
seen in the confusion matrix, when the true label is “0”, the model predicts correctly 20 out of 42
times, and predicts incorrectly 22 out of 42 times. This indicates that the model cannot find good
patterns in the data when there are no forest fires, and therefore is unable to accurately make
predictions.

Figure 4: Confusion matrix of the model trained on the Montesinho Forest Fires Dataset. Here 0
represents no forest fire and 1 indicates the presence of a forest fire. When the true label is 0,

the model cannot accurately predict whether there is a forest fire and essentially
guesses—there is a 50% chance of the model predicting either label. This means that the model
can not find good patterns in the data when there are no forest fires, and therefore is unable to

accurately make predictions. When the true label is 1, the model is more accurate in its
predictions but still not as accurate as in the Algerian Forest Fires dataset.
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When looking at an example decision tree (Figure 5), it is evident that the model does not
make good splits in the data early on. Instead of using conditions to split the data roughly in half,
the model overfits to the data, isolating individual samples in the beginning rather than towards
the middle/end.his means that the model is not able to accurately identify patterns in the data
and instead is fitting very closely to the intricacies of the training data rather than producing
generalizable results.

Figure 5: Example of the first three layers from one decision tree from the random forest model
trained on the Montesinho Forest Fires dataset. The model overfits the data. Instead of using

conditions to split the data roughly in half, the model isolates samples early on. For example, the
initial split partitions the data into 97.7% and 2.3%, creating a pure leaf. If the model were

learning the patterns in the data, the split would be closer to 50% and 50%.
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The feature importance table in Table 3 shows that temperature, relative humidity, and
the Duff Moisture Code are the most prominent factors in making the decision for whether a
forest fire will occur or not. This means that a higher priority should be given to offset these
factors. Unlike the feature importances for the Algerian Forest Fires dataset, where there is a
clear indication of the features that are the most vital in making the final decision, the feature
importances for each feature in the Portugal dataset are relatively similar to one another.

Table 3: Feature importance table of model trained on the Montesinho Forest Fires dataset.
Temperature, relative humidity, and the Duff Moisture Code are the most prominent factors in

making the decision for whether a forest fire will occur or not. Unlike the feature importances for
the Algerian Forest Fires dataset, where there is a clear indication of the features that are the
most vital in making the final decision, the feature importances for each feature in the Portugal

dataset are relatively similar.
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Discussion
As seen in Figure 6, the decision trees for the model trained on the Algerian Forest Fires

dataset were much simpler than those for the model trained on the Montesinho Forest Fires
Dataset.

Figure 6: Side by side comparison of an example decision tree from the model trained on the
Algerian Forest Fires dataset and the first three layers of an example decision tree from the

model trained on the Montesinho Forest Fires dataset.

For the model trained on the Algerian Forest Fires dataset, the model made good splits
early on in the data—splitting the data roughly in half in the beginning few splits. On the other
hand, the decision trees for the Montesinho Forest Fires dataset isolated samples in the first few
splits, which is an indication that the model was overfitting the data. Since the model worked
well for the Algerian Forest Fires dataset, this can be an indication that there is no significant
pattern in the features that correlates with forest fire presence in the Montesinho region (since
the same features are used in both datasets). As stated in the literature review, forest fires are
much more common in Algeria than Portugal—forest fires resulted in 74% [13] of tree cover loss
in Algeria between 2001 and 2023 and only 34% [14] of tree cover loss in Portugal. This could
potentially explain the low accuracy of the model trained on the Portugal dataset. Additionally,
the data used for forest fires in the Montesinho Forest was originally a burn area dataset which I
manipulated to serve as whether a forest fire occurred or not. I made an assumption that a 0
burn area indicated that a fire did not occur, but it is possible that a 0 burn area could have
represented a very small fire.

Further, the feature importance tables for both datasets are different which could mean
that the environmental factors that cause forest fires are specific to the region, meaning that
results cannot necessarily be generalized to all areas. For the Algerian Forest Fires dataset, the
important features were the initial spread index and Fine Fuel Moisture Code. This makes sense
because high content of fine fuels leads to ease of fire ignition. For the Montesinho Forest Fires
dataset, the temperature and relative humidity were the most dominant factors. The Montesinho
Forest is located in northern Portugal, where areas experience higher humidity levels. Summers
are humid and winters are not overly humid [17]. Due to the variation of humidity, it plays a large
role in forest fire occurrence. On days when it is more humid, fires are less likely to occur due to
the dampening effect the moisture in the air creates.
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Conclusion
I built a random forest classifier to predict whether a forest fire is likely to form given a set

of environmental conditions. I trained the model on two datasets—Algerian Forest Fires and
fires in the Montesinho region. The model achieved a 100% accuracy when trained on the
Algerian Forest Fires dataset, and achieved 55.78% accuracy when trained on the Montesinho
Forest Fires dataset. By looking at the example decision trees for both datasets, it is likely that
the model overfitted the data from fires in the Montesinho forest. The decision trees were far
more complex for the Montesinho Forest Fires dataset compared to the Algerian Forest Fires
dataset. The feature importance for both datasets are significantly different. The key features for
the Algerian Forest Fires dataset are Initial Spread Index and Fine Fuel Moisture Code. For the
Monteinsho Forest Fires dataset, the dominant features are temperature, relative humidity, and
Duff Moisture Code. This is an indication that the results of important features cannot
necessarily be generalized to fires in all regions.

Forest fires are extremely destructive and detrimental to the environment, so it is crucial
to prevent them. Understanding the environmental factors that cause forest fires is the first step
in order to offset such conditions to reduce the likelihood of fires.

Future work includes analyzing datasets from forests around the world to develop a more
cohesive understanding of the factors which greatly affect forest fire formation. It is also vital to
understand the key environmental factors that cause forest fire formation and take preventative
measures to prevent the conditions from reaching a point of harm.
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