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 Abstract 

 AlphaFold is a very famous example of a machine learning program that was used to solve a 
 generational problem in figuring out the 3D structure of a protein given its sequence, which it 
 achieves to some degree. However, the program is often misunderstood, and for a long time 
 wasn’t very accessible to many researchers and the general public, until Colabfold was created 
 for anyone to use AlphaFold in an easy, user-friendly format. While accessible, it can still be 
 difficult for many researchers to navigate as the tool uses complicated techniques and jargon, 
 so this paper aims to explain why AlphaFold was created and what problem it solves, how it 
 works, a deep dive into the code of it all, and what it can and can’t do, as well as how to 
 potentially make it better. This paper aims to shine light and give insight into the world of 
 AlphaFold in a vernacular that anyone can understand and interpret. 

 Purpose of AlphaFold 

 AlphaFold is an AI (artificial intelligence) program powered by a neural network developed by 
 Google’s DeepMind to  predict protein structures  [1,5].  It is entirely open source and is used to 
 predict the 3D structure of proteins from an amino acid chain, below is a quick summary of this 
 process (Fig. 1). 
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 Figure 1.  DNA to Proteins Explained  . A refresher on how cells transcript and translate DNA 
 into folded 3D proteins. 

 While DNA acts as the blueprint of genetic information for our cells, proteins are the core 
 molecules executing the processes and functions dictated by our DNA. The journey from DNA 
 to proteins involves two key steps:  transcription  (DNA to mRNA) and translation (mRNA to 
 protein).  During translation, our cells read the mRNA  and segment it into groups of three letters 
 called codons. Each codon is then translated into one of twenty different amino acids, which are 
 linked together in a chain. Following the conversion of the RNA sequence into a chain of amino 
 acids, the chain detaches and folds into a protein in a highly complex process, resulting in a 3D 
 tertiary protein structure (see Fig. 5). 

 The behavior of proteins is often guided by their 3D structure and shape, which dictates how 
 they engage and coordinate with other proteins in the body [2]. Understanding a protein’s 
 structure is critical for discerning its function and potential relevance in research and medicine. 
 For example, in drug discovery and development, knowing the shape of a viral protein can 
 enable researchers to design drugs to neutralize its function more effectively [3, 13]. Accurate 
 structural predictions can also help scientists see how proteins malfunction or misfold to cause 
 several proteinaceous diseases such as Parkinson's and Alzheimer's [4, 13]. Thus, a novel, 
 cost-effective means to accomplish this became all the more valuable, which is what AlphaFold 
 aims to achieve. 

 Creation of AlphaFold 

 Computational methods for predicting accurate 3D protein structures have usually focused on 
 physical interactions or evolutionary history.  Using  the physical interactions approach involves a 
 lot of molecular physics and thermodynamics and is generally impractical. Using the 
 evolutionary history of protein sequences is a more practical and efficient alternative. To 
 determine the protein structure, this method analyzes the evolutionary history of the protein, 
 similarities to previously solved proteins, and the relationships between similar pairs of amino 
 acids (residues) that have evolved across different species (known as pairwise evolutionary 
 correlations) [5, 13]. This method greatly benefits from experimental protein structures deposited 
 in the Protein Data Bank (PDB) [30], the genome sequencing of more species to derive more 
 protein sequences, and better deep learning neural network interpretations to interpret these 
 protein structures more efficiently [6]. 

 The evolutionary history method proved viable with the creation of AlphaFold, the neural 
 network behind the first computational approach to predict protein structures with high accuracy. 
 AlphaFold structures have a median backbone (core of the protein) accuracy of within 0.96 
 angstroms (an angstrom is 0.1 nm, used to measure atomic structures); the next best model has 
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 an accuracy of within 2.8 angstroms, and it also models highly accurate side chains. The overall 
 accuracy of AlphaFold is within 1.5 angstroms compared to 3.5 angstroms of the nearest 
 competitor; it is also highly scalable to very long proteins [5] (Fig. 2). 

 Figure 2.  Examples of AlphaFold Accuracy  . Above is  the median backbone accuracy of 
 AlphaFold (G427) in angstroms compared to other models (G009-G216) and some example 

 outputs (a, b, c, d). [5]. 

 How AlphaFold works 

 A lot of the processes that occur below in AlphaFold are powered by neural networks, which are 
 a kind of machine learning model that mimics how the human brain works (see Fig. 3). The 
 fundamental unit of neural networks are neurons, which receive an input, process it, and give an 
 output. Several of these neurons are grouped into columns, known as layers. The neural 
 network contains an input layer, an output layer, and hidden layers which perform computations. 
 Each neuron in a layer will feed its output as an input to the neurons in the next layer. Still, the 
 importance of each input the neurons in the next layer receive is determined by the weight or 
 strength of the connection the neurons have; the stronger the weight, the more influential the 
 input is. There are also additional biases in the network, which are independent parameters 
 added to the inputs of neurons to adjust the output, along with the weights from the previous 
 neurons. The neural network is then asked to provide a desired output, and it tweaks itself with 
 all of its variables until its output is constantly close to the desired output [7, 13]. By doing this 
 training to maximize the confidence and accuracy of its protein model, AlphaFold can 
 consistently pump out accurate protein structures confidently given the input of a protein 
 sequence. 
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 Figure 3.  Neural Network Diagram  . In the example above,  the layers are labeled, the dots are 
 the neurons, and the arrows are the weights from the previous layers. [8]. 

 The remarkable thing about neural networks is that we don’t know what the inside of them looks 
 like; the network itself creates its own architecture. We humans merely give a desired example 
 output some example inputs and let the network figure out how to best train itself to provide the 
 desired output given an input [7]. This is why neural networks are often extremely complicated 
 and convoluted. There are many different variations of neural networks, including networks that 
 monitor their progress layer by layer, cycle back to previous layers, and use multiple dimensions 
 to map spatial features [9, 13]. AlphaFold includes all of these different kinds of neural networks 
 at some stage or another, and they are the reason AlphaFold can do what it does. 

 The AlphaFold network comprises of two main stages: 

 Evoformer Stage 
 In this main stage, the MSA (Multiple Sequence Alignments), and pairwise features of the input 
 protein are processed through repeated layers of Evoformer, a novel neural network block [5] 
 (Fig. 4a). 

 1.  MSA—Multiple Sequence Alignments are protein sequences similar to the desired 
 protein sequences that  are all aligned together  . They  provide key information about 
 evolutionary history and conservation. 

 2.  Pairwise Features - The relationships between  any  pair of two residues  (what’s left of 
 amino acids when they join into a chain) within the sequence contained within a Pair 
 representation. 
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 Figure 4a.  Architectural Details of Evoformer Stage  .  A visual representation of the Evoformer 
 Stage of AlphaFold, contains seven major steps (I-VII). [5]. 

 In every single block (layer), the MSA representation (I) is first refined using the Pair 
 representation containing the Pairwise Features (II), and then it updates the Pair representation. 
 The MSA representation refines itself by using the Pairwise Features (III) to find evolutionary 
 information and context and then transitioning itself to absorb this information (IV). Then, it 
 provides this information back to the Pair representation (V), which updates its Pairwise 
 Features by graphing them as triangles and adjusting each edge and node to minimize 
 interference or error (VI, see Fig. 4b). This process is repeated iteratively 48 times, each time 
 gaining more evolutionary context and becoming more accurate. The end product is the original 
 protein sequence (amino acid chain) and the Pair Representation, which now contains all the 
 evolutionary context and information about the protein that can be taken advantage of in the 
 next stage in the form of relations between residues (VII) [5, 13]. 

 Figures 4b-c.  Pair Representation Details  . Above is  a visual representation of how select pairs 
 of residues are weighted in a pair representation and shown as a graph representation (b), as 

 well as how it self-updates the graph to minimize interference (c). [5]. 

 Structural Stage 
 The structural stage takes in the refined pair representation of every possible pair of residues 
 from the previous stage and the original protein sequence, then determines the 3D structure of 
 the protein and generates it (Fig. 4d). The main body of the protein, known as the basic 
 backbone structure, is represented as a series of independent rotations and translations to a 
 frame (known as a residue gas representation, shown in Fig. 4e) for each residue in the 
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 sequence. The rotations and translations that iteratively update the frame are determined by the 
 IPA module (which takes in the protein sequence and pair representation, shown in d) and then 
 are enacted by an update operation. Initially, when modeling, the rotations and translations 
 follow certain prioritizations, but the complex rules behind the geometry of peptide chains 
 (protein chains) are ignored to allow for the specific refinement of each part of the chain and 
 then are factored at the end using a violation loss term. After every block has finished, the stage 
 uses the protein sequence and fully updated backbone frames to create a predicted 3D 
 molecular model of the folded protein and provides the accuracy of the predicted structure 
 compared to the true structure if known (Fig. 4c) [5, 13]. 

 Figures 4d-f.  Architectural Details of Structural  Stage  . Above is the Architectural Details of 
 the Structural Stage of AlphaFold (d), example of the backbone frames (e), and the algorithm to 

 check structural accuracy(f). [5]. 

 AlphaFold predicts two kinds of protein structures,  monomers  , and  multimers  . Monomers are 
 proteins folded from a single protein chain, whereas multimers are composed of several protein 
 chains that fold together into a larger structure. Overall, AlphaFold inputs the primary protein 
 structure, which is the amino acid chain, and during the structural stage, the model predicts the 
 tertiary protein structure, which is either given as the output (if monomer) or combined in an 
 additional stage with the other tertiary protein structures for each protein (amino acid) chain to 
 form a quaternary protein structure (if multimer) [13] (see Fig. 5). 
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 Figure 5.  Four Levels of Protein Structure  . Above  are the four stages of protein structure as 
 the protein folds from a one-dimensional chain into a three-dimensional structure, and which 

 stage AlphaFold predicts as its output depending on the protein type (monomer/multimer). [10]. 

 How to use and run AlphaFold 

 AlphaFold’s code can be found on GitHub and run locally or on Google Colab. Google Colab is 
 a tool that Google recently created that runs code on Google's servers. It’s free to use, 
 beginner-friendly, and generally more efficient than running code locally on a computer [11]. 

 Here is the Colab file for AlphaFold [15]: 
 https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb 

 And here is the Github repo that contains the code [16]: 
 https://github.com/sokrypton/ColabFold 

 We will now go block by block through the code in two stages. First, we will look at the Colab 
 user interface and explain what each stage does and its settings. Then, we will delve deeper 
 into the actual code of AlphaFold below to see how these processes are expressed and run. 

 There are several stages of the code in the Colab version; they can be divided as such: 

 ●  Block 1 - Input Protein Sequences 
 ●  Block 2 - MSA options 
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 ●  Block 3 - Model and other Advanced settings 
 ●  Block 4 - Run Prediction 
 ●  Block 5 - Display 3D structure 

 Block 1 - Input Protein Sequences 

 In this block, the desired protein sequence is inputted, and a test run is started (Fig. 6a). 

 Figure 6a.  Block 1  . Screenshot of Block 1 in AlphaFold2.ipynb  (Colabfold). [15]. 

 The  query_sequence  is where the desired protein is  inputted. Each letter stands for one amino 
 acid residue [18]. The sequence is formatted to capitalize and remove spaces. A colon should 
 be used to separate each protein chain within a complex (multimer) [15]. 
 jobname  is used to create a name for the test run,  a hash is created using the inputted 
 query_sequence and is tackled onto this string to create a unique identifier for the test run; in 
 this example, “test_a5e17” 
 num_relax  determines how many “top ranked structures”  go through an additional refinement 
 process called  AMBER  , which uses molecular dynamics  to create a more realistic and accurate 
 model [12, 13]. 
 template_mode  is used to find templates if asked.  Templates are similar protein structures that 
 have already been determined and can be used to help predict the structure [15, 19]. 
 The output of this block is the identifier of the test run (jobname), the formatted sequence, and 
 the length of the sequence in residues [13, 15]. 

 Block 2 - MSA Options 

 In this block, the options for the Multiple Sequence Alignments (MSA) mode and pairing mode 
 are configured (Fig. 6b). 
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 Figure 6b.  Block 2  . Screenshot of Block 2 in AlphaFold2.ipynb  (Colabfold). [15]. 

 The  msa_mode  determines what kind of MSA is used,  the three main modes are: 
 mmseqs2_uniref  (_env): These modes use a computer-generated  MSA derived from the 
 mmseqs2 server [11, 14], and are the default option. 
 custom  : This mode uses a custom user-inputted MSA,  and is useful as a more advanced option 
 for testing certain MSAs or aiming for more customized results [11]. 
 single_sequence  : This mode only uses the original  sequence and no others, and is usually 
 used for benchmarking MSAs [13, 15]. 

 The  pair_mode  determines if the model should use an  unpaired MSA, paired MSA, or both [15]: 
 unpaired  : Uses a regular, unpaired MSA, which identifies  similar sequences for  only one chain  , 
 and is used to find intra-chain coevolutionary information; is used by default for monomers [22, 
 23]. 
 paired  : Uses a paired MSA, which identifies similar  sequences for  multiple chains  , and is used 
 to find inter-chain coevolutionary information; is used by default for homo-multimers (complexes 
 of identical chains) [22, 23]. 
 unpaired_paired:  Uses both an unpaired and paired  MSA to gain coevolutionary information for 
 both each individual chain and the entire complex as a whole; is used by default for 
 hetero-multimers (complexes of differing chains) [22, 23]. 
 Note: When using unpaired_paired, it will default the pair_mode to whatever is dictated by the 
 model_type, which itself is dependent on whether the sequence is a monomer, homo-monomer, 
 or hetero-monomer [23]. 

 Block 3 - Advanced Settings 

 These settings for the model are advanced, optional, and mostly self-explanatory. The most 
 important and interesting ones are covered below (Fig. 6c). 
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 Figure 6c.  Block 3  . Screenshot of Block 3 in AlphaFold2.ipynb  (Colabfold). [15]. 

 The  model_type  is very important, and determines which  version of AlphaFold to use [11, 15] 
 (the pros and cons of each as well as an example are outlined in this resource [21]). 
 num_recycles  determines how many times the program  is recycled, i.e.  ,  when the output of 
 AlphaFold is fed back in for refinement, by default it happens three times [5, 11, 13, 15]. 
 relax_max_iterations  limits the amount of iterations  AMBER can run for if AMBER is activated, 
 0 means no limit is imposed and it can take very long to run [15]. 
 The  pairing_strategy  of the MSA can be either greedy  or complete, complete means that every 
 single pair of residues is checked, while greedy means that only selective, informative pairings 
 are chosen. Greedy is the default and is more efficient, but complete is more accurate [13, 15]. 
 max_msa  gives the option to limit the size of the  MSA for the sake of efficiency while trading off 
 accuracy [13, 15]. 
 use_dropout  gives the option to use Dropout, a technique  where neurons are randomly 
 removed during the neural network stages to prevent overfitting, when the model becomes too 
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 comfortable in its current state and refuses to change and evolve. The randomness of this and 
 other parts of the model are determined by random seeds (  num_seeds  ); more seeds prevent 
 variance from the random initialization of each seed [13, 15, 17]. 

 Block 4 - Run Prediction 

 This block is where AlphaFold is actually run, so we will look at the code and show the most 
 relevant processes that occur within the code, and where everything ties in. This will include 
 both the code from the ColabFold (Fig. 6d-e) and the code from GitHub (Fig. 7) [15, 16]. 

 Figure 6d.  Imports for Block 4  . Screenshot of required  libraries and functions for ColabFold 
 being imported in AlphaFold2.ipynb (Colabfold). [15, 16]. 

 The portion above (Fig. 6d) imports several modules from the colabfold libraries, the key module 
 that runs AlphaFold is  colabfold.batch.run  [20], which  calls the run() function from the file 
 batch.py within the colabfold folder. Note: Several other libraries (such as get_queries) are run 
 separately and inputted into the run() function as parameters rather than natively [16, 20]. 
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 Figure 6e.  Run function in Block 4  . Screenshot of the run function [20]; which is being called in 
 AlphaFold2.ipynb (Colabfold). [15, 20]. 

 The run() function takes in a lot of parameters (Fig. 6e), including the query sequence (Block 1) 
 and all the MSA and advanced settings (Blocks 2-3). The run function within AlphaFold then 
 outputs five 2D predicted structures and ranks them from most to least accurate [15]. The 
 function behaves like a main function within Colabfold (although there is another main() function 
 within the GitHub version), and as such, offloads most of its processes to other functions that it 
 calls within itself or takes in as inputs [16, 20]. The most important functions that directly relate 
 to the prediction itself are shown below in order of where they are defined in the code [20]: 

 predict_structure()  (Lines 324-542) - This function  contains the heart of AlphaFold; it takes the 
 sequence and features from the MSA as inputs and outputs the predicted structure. It generates 
 a random seed (more if requested), loads in the AlphaFold models, and the parameters that 
 control how they behave, and preprocesses the sequence, MSA, etc. After this, it takes in all of 
 these and predicts a structure, rates the model confidence of each part of the structure, and 
 outputs it as a protein object. Finally it reranks the models based on the predicted confidence 
 [13, 20]. 
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 Figure 7.  Portion of the predict_structure() function.  Screenshot of a relevant portion of the 
 predict_structure() function within the run() function. [15, 20]. 

 The figure above (Fig. 7) shows the prediction (422-429), model confidence (435-446), and 
 creation of protein objects (449-455) [20]. 

 pair_sequences()  : Pairs the query sequence(s) and  a paired MSA together into a larger MSA, 
 only used for multimers [13, 20]. 

 pad_sequences()  : Aligns the sequences within an unpaired  MSA and formats them to make 
 sure the sequences all have the same length by adding spaces, which are only used for an 
 unpaired MSA (usually monomers) [13, 20]. 

 get_msa_and_templates()  : Finds and obtains the unpaired  MSA, paired MSA, and templates 
 (if chosen) that match the query_sequence(s) [13, 20]. 

 build_monomer_feature(), build_multimer_feature()  :  These functions parse through the 
 unpaired MSA and paired MSA, respectively, and create features for each depending on the 
 MSA pair type. Features include key information derived from the MSA, the sequences within, 
 and the MSA itself [13, 20]. 

 process_multimer_features()  : Additional processing  for the multimer features, as they are 
 more complex [13, 20]. 

 pair_msa()  : Takes in several unpaired MSA for each  chain in a multimer and combines them 
 into a paired MSA that contains additional features that describe how the chains link together 
 and form a system [13, 20]. 

 generate_input_features()  : Creates sufficient paired  and unpaired features using some of the 
 functions above to input into the structure prediction [13, 20]. 

 unserialize_msa()  : Loads in an MSA stored in a FASTA  format (text-based way to represent 
 protein sequence data in an efficient and human-interpretable way) and converts it back to a 
 machine-usable format for analysis and processing [13, 20, 24]. 

 msa_to_str()  : Adds an unpaired or paired MSA to a  FASTA string (i.e. serializes the MSA) [13, 
 20]. 

 Below is a visual graph of these functions ordered by when they are run in the program [20]. 
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 Figure 8.  Visualization of how the run() function  is executed.  A visualization of how the run() 
 function is executed, containing information about where each function is defined and called 

 with line numbers and additional info on how the functions are structured when executed within 
 the run function code on Github. 

 To read this graph (Fig. 8), start from run() and follow the arrows from top to bottom, left to right, 
 and from box to box (function to function). The program runs these functions in this order: each 
 colored box represents how far each function is called respective to run() (1st, 2nd, 3rd), the 
 numbers inside the box (upper left) represent the lines of code where the function is defined, 
 and the numbers adjacent to the arrows represent the lines of code where the function is called 
 upon by the previous function. Additionally, the yellow numbers show which functions are run 
 depending on the pair_mode (which in turn is dependent on monomer vs multimer) [22, 23]. 

 To summarize what the run() function does in order, it gets the desired MSA(s) and templates 
 (optional), converts the MSA(s) into a machine-readable format (unserialized them), then 
 processes them (depending on monomer vs multimer it pairs or pads them) and serializes it 

 15 



 back into text. Then, the input features are created, the MSA(s) are processed again using the 
 same method as before, and specific features are built and processed to input specifically into 
 AlphaFold (again, depending on monomer vs multimer). Finally, the protein structure is 
 predicted using the features derived from the MSA(s) [15, 20]. 

 Block 5 - Display 3D Structure and Plots 

 The final portion of the Colab version of AlphaFold involves displaying the predicted 3D 
 structure of the protein (Fig. 9-10c) [15]. 

 Figure 9.  Block 5.  Screenshot of Block 5 in AlphaFold2.ipynb  (Colabfold). [15]. 

 During the structure prediction from the previous block, the model generates five predicted 
 structures (by default) and ranks them 1 to 5, most to least accurate.  rank_num  simply states 
 which one to use; by default, it uses “1” (see Fig. 9). 
 The  color  paints the protein structure based on the  confidence of the model (lDDT), the different 
 chains present (chain), or aesthetically (rainbow). The most practical of these options is lDDT, 
 which is the default and shown below (in Fig. 10a): 
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 Figure 10a.  Default 3D Predicted Protein Structure.  Screenshot of the 3D protein structure 
 predicted by AlphaFold2.ipynb (Colabfold). [15]. 

 The model above (Fig. 10a) is very confident, and as such is mostly blue, except for the ends, 
 which are more orange, as the model is not very confident in that section. This 3D structure can 
 be endlessly rotated in all axes to see the full structure, as well as zoomed in. 

 show_sidechains  and  show_mainchains  are options that  display the additional molecular 
 chains that come along with the backbone structure predicted by AlphaFold; see Fig. 10b. 

 Figure 10b.  3D Predicted Protein Structure with sidechains  and mainchains.  Screenshot of 
 the 3D protein structure predicted by AlphaFold2.ipynb (Colabfold) with sidechains and 

 mainchains displayed as well. [15]. 
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 The model above (Fig. 10b) is more accurate in terms of how the protein would appear, but it 
 does look very messy and makes it harder to see the more relevant structure, so these modes 
 are usually turned off. 

 The Colab version of AlphaFold additionally creates plots for bioinformatics purposes (Fig. 10c). 

 Figure 10c.  Assorted plots for the model  . Screenshot  of the plots generated by 
 AlphaFold2.ipynb (Colabfold) for the test model. [15]. 

 The square graphs show the accuracy and correlation of the pairwise representations for every 
 ranked model, the bottom two graphs show MSA coverage (the bluer the line the more related it 
 is to the original) and the confidence level by position of the model for every ranked model [15]. 

 Limitations and Potential Advancements 

 Despite all of the great advances pioneered by AlphaFold in the fields of molecular biology and 
 artificial intelligence, the tool is still very new and has plenty of limitations, so this section will 
 cover some of these limitations as well as a potential improvements and ideas that could make 
 AlphaFold more accessible and a better tool. 

 Limitations of AlphaFold 

 AlphaFold sometimes struggles with predicting new or unusual proteins, known as “orphans,” 
 because they have lesser close relatives, which is how it derives evolutionary information to 
 predict protein structures. These protein predictions result in low-accuracy predictions with low 
 confidence scores (red/orange in lDDT), and they can be made far worse if the “orphan” 
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 proteins have little to no related structures in the PDB (Protein Data Bank). This is why it’s 
 essential to update the PDB with as many structures as possible, as AlphaFold excels at 
 predicting new proteins  if  there are enough related  sequences in the PDB to produce a quality 
 MSA for prediction [25, 30]. 

 Additionally, it struggles with high variation within proteins, whether that be regular point 
 mutations within DNA that are then translated to altered residues within the protein or proteins 
 with inherently high variation within sequences, such as antibodies. This is because of both a 
 lack of data on the effect of variations within proteins and AlphaFold’s focus on long-term 
 evolutionary changes rather than physical forces that cause short-term changes such as 
 radiation, mutation, etc [25]. 

 While performing their functions, proteins often change their structure to adapt their function (a 
 great example is the  complement system  [26]), but  only a few structures have their potential 
 conformations in the PDB (which AlphaFold uses for reference. By default, AlphaFold only 
 predicts static structures, but researchers have found ways to trick AlphaFold to predict different 
 versions of the proteins) [25]. 

 Figure 11.  Accuracy of Sugar-bound vs Sugar-free versions  of Hexokinase  . Screenshot of 
 the plots generated by AlphaFold2.ipynb (Colabfold) for the test model. [25]. 

 Above (Fig. 11) is an example of how a protein can conform to a completely different structure 
 when bonding with a different molecule. Here, when the protein Hexokinase (right) bonds with a 
 sugar molecule, it conforms to a sugar-bound structure (left), and when AlphaFold predicts both, 
 it has a lot more trouble predicting the sugar-bound structure (within 3.02 angstroms to within 
 0.67 angstroms, the lower, the more accurate) [25]. 
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 There are also several functions within the process of protein folding and interactions that 
 AlphaFold wasn't designed to do [25]. These include but are not limited to: 

 -  Other molecules that interact (but don’t bond) with proteins, such as ions, nucleic acids 
 (DNA, RNA), and other non-proteins that work closely with proteins and may provide key 
 context on the protein’s function. 

 -  Any modifications that happen to the protein after translation. 
 -  Free nucleic acids (unfolded DNA or RNA that didn’t translate into proteins). 
 -  Any ions or other molecules (ligands) that bond post-translation (AlphaFold usually 

 predicts them when absent, a false positive). 
 -  Anything to do with the Membrane Plane (a fluid membrane made up of fat lipids, 

 complex molecules, and proteins within cells), including a protein’s relative position to it 
 (if the protein spans through it). 

 Potential Advancements for AlphaFold 

 In this final section, we will cover examples of potential advancements that can be made to 
 AlphaFold, ranging from small (portion of AlphaFold), to medium (AlphaFold as a whole), to 
 large (the field as a whole). 

 Small advancements: 

 When trying to input a protein into AlphaFold, scientists often go onto the  NIH library  [27], and 
 search for proteins, looking for the protein sequence listed at the bottom. The problem is the 
 sequence usually looks like the sequence below (Fig. 12a). 

 Figure 12a.  Example of Protein sequence from NIH library  .  Screenshot of how a protein 
 sequence would appear in the NIH library. [27]. 

 The sequence above (Fig. 12a) isn’t compatible with the input the way it is formatted. This 
 problem can easily be fixed by adding the code below (Fig. 12b), which removes the spaces 
 (already done in the current version [15]) and then numbers and capitalizes the sequence. 
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 Figure 12b.  Code snippet that fixes the formatting  issue  . Screenshot of a code snippet that 
 would fix the formatting issue with the NIH library (the two lines below the second comment). 

 [27]. 

 This simple snippet of code (Fig. 12b), when added, saves scientists a lot of time and effort from 
 removing the digits and capitalizing manually and more seamlessly integrates the library of 
 protein sequences and the program. 

 Medium advancements: 

 There are several areas where AlphaFold could be advanced, from the code to the interface to 
 the content of the program. Here are some potential improvements below: 
 (Note: These are all just ideas, which may vary in actual feasibility, some may or may not work) 

 ●  The ColabFold program takes a long time to run, especially for multimers and complex 
 proteins. There are modes within the advanced settings of ColabFold that reduce the 
 runtime [15] (such as reducing the size of the MSA or reducing the number of ranks 
 generated), but all of those modes have to be inputted manually, and for a novel protein, 
 it can be hard to tell the correct tradeoff between accuracy and efficiency. So potentially, 
 a time-saving mode could be created that would automatically tweak specific modes to 
 reduce the runtime if it deems the tradeoff of accuracy to be worth it; this automatic mode 
 could be powered by some neural network to run the ColabFold program with more 
 efficiency and manage the tradeoff of accuracy. 

 ●  Instead of manually inputting a query sequence, the ColabFold program could have a 
 search function that saves the user from having to search and find a protein sequence; 
 they would only have to type the name of a protein, and it would predict the most 
 common version (For searching for particular proteins the specific tag used in the NIH 
 library [27] would have to be used) 

 ●  Because Google Colab uses a different computer when a runtime is restarted, any 
 one-time-only downloads that AlphaFold requires must be repeated, which can take a lot 
 of time (if using both amber and templates, 2 minutes are used just to download their 
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 libraries, and another 90 seconds are used to download the specific AlphaFold model 
 (ptm) [21]). This problem could be fixed by potentially working with Google and 
 downloading all of these files onto some of their machines and assigning those specific 
 machines to ColabFold users to save time on downloads. 

 ●  Additionally, restructuring the order in which ColabFold is run by placing any 
 user-inputted parameters (model_type, pair_mode, template_mode, etc.) nearer to the 
 end would make the turnaround for quick runs of the model with slight changes to certain 
 parameters (for purposes of experimentation) far more efficient. Anything unchanged 
 within ColabFold (such as downloading libraries, defining functions, etc.) could be run 
 only once, so subsequent runs of ColabFold could be processed far quicker. 

 ●  Looking at the model_type options [21], some models had better overall accuracy (  ptm  ), 
 and some models had better point accuracy (  multimer_v2  ,  deepfold_v1  ). By using two 
 algorithms, one to determine where each model does best and focus that model on what 
 section it does best, and another one to stitch each piece of the protein model together, a 
 “Frankenstein” model can be created with the best attributes from every available model. 
 This model would be extremely time-intensive (measures like the ones above could be 
 used to save time) but could potentially be more confident and accurate than its parts. 

 ●  There are  three general types of tertiary structures  (what AlphaFold outputs for 
 monomers):  globular  ,  fibrous  , and  membrane  [29]. While  it’s usually pretty easy to tell 
 which is which based on their shape, sometimes the protein may be more ambiguous. 
 AlphaFold could help out by labeling every 3D structure it predicts as one of these protein 
 types (or, in the case of multimers, what type each strand within is), which would make 
 the model easier to interpret. 

 ●  AlphaFold provides plenty of plots and graphs with its output for bioinformatics purposes, 
 but some of these graphs could do with adding in a key and labels for each axis, as well 
 as a quick explanation on how to interpret the plots and graphs for beginners to more 
 easily use the data, and to make the data more accessible. 

 Large advancements: 

 Large advancements are the ideas and concepts that will not just improve AlphaFold but elevate 
 the entire field. There are three of these ideas below. 

 Improved accessibility to new proteins from the Protein Data Bank using web parsers. 
 There are thousands of new proteins discovered every year, but not all of the proteins 
 discovered end up on the PDB. These novel proteins are usually from unconventional hosts 
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 (any host besides humans/mice) and are usually still present in research documents across the 
 internet. A web parser (or scraper) could theoretically comb through all of these overlooked 
 proteins and automatically run them through AlphaFold (if enough similar proteins are found) 
 and add them and their structure to PDB. This would significantly improve cooperation between 
 researchers by making these overlooked proteins more accessible and shed more light on the 
 fields they represent [30]. 

 Adding features to AlphaFold to overcome some of its limitations. 
 Now that the concept of using machine learning to predict molecular structures has been 
 proven, AlphaFold can move beyond some of its limitations by adding features, such as training 
 the model to predict several variations of the protein, molecules binding to the protein, free DNA 
 and RNA strands, and protein-nucleic acid complexes. This would dramatically improve the 
 scope of AlphaFold’s reach and would be an important stepping stone for future endeavors. 

 Predicting Protein Mimicry. 
 Protein Mimicry is a phenomenon where bacterial (or other foreign organism) proteins mold 
 themselves into a shape similar to that of the host’s own proteins, usually to avoid detection. 
 When AlphaFold predicts a protein, it could also show bacterial proteins that have been known 
 to mimic that specific protein. This would give important insights and information to researchers 
 studying protein mimicry and expose more people to the field [31]. 
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