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Using Explainable Artificial Intelligence to Locate Pneumonia
Anthony Novokshanov

Abstract Artificial intelligence (Al) has already become a vital resource in numerous industries;
however, it is often challenging to understand how Al reaches its results. This lack of
transparency, combined with potential biases within the machine learning model, prevents
professionals in critical fields like healthcare from relying on deep learning models for diagnostic
purposes, hindering the widespread use of Al in healthcare. This paper investigates the
application of XAl in the medical field, focusing on the detection of pneumonia through the
analysis of lung X-ray scans. In this study, we developed an XAl tool, utilizing a Convolutional
Neural Network (CNN) constructed with PyTorch and trained on the Pneumonia MNIST dataset.
Our model achieves an accuracy of nearly 91% on 28x28 pixel images and highlights the top
pixels considered most important by the deep learning model in its decision-making process.
The primary aim of this project is to present a proof-of-concept tool for the integration of XAl into
healthcare diagnostics, with the goal of assisting medical professionals in making informed
decisions and ultimately saving lives. By demonstrating the feasibility and effectiveness of XAl in
pneumonia detection, we lay the groundwork for future advancements in healthcare Al,
emphasizing the importance of transparency and reliability in Al models.
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1. Introduction

1.1Background

Despite artificial intelligence (Al) advancing rapidly, it faces significant limitations that prohibit it
from being used in healthcare. The most serious deficiency of Al's use is that it is not able to
explain its methodology when producing outputs [1]. This is a very serious drawback,
particularly in contexts closely tied to human life [2]. Industries, such as healthcare, are reluctant
to use deep learning models due to concealed biases and potential inaccuracies in their outputs
[3]. These factors outweigh the increased efficiency that deep models may bring, hindering their
widespread adoption in the field. For this reason, getting machine learning to a point where it
can cohesively explain what factors determine a specific output has become a very important
factor leading to the development of new explainable artificial intelligence (XAl) models.

XAl models work to give a user a level of transparency that deep learning models are unable to
by explaining what happens inside the so-called algorithms' “black box.” The term “black box
model” refers to an algorithm where the inner workings of the model are not easily interpretable
by humans, with logical relationships between inputs and outputs being difficult to establish [4].
To address this transparency issue, techniques such as the Local Interpretable Model-agnostic
Explanations (LIME) were developed. As indicated by its name, LIME is model-agnostic, which
means that it can be applied to virtually any deep learning model regardless of the underlying
structure of the framework [5]. This makes it very convenient to use as it can be used alongside
already existing machine learning models without rewriting the very core of their algorithms.
LIME works by taking a piece of data as an input and using data augmentation to create many
perturbations of the same input [6]. The new instances of the datapoint are then inputted into the
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model, and prediction values are recorded. A new local deep learning model is subsequently
trained using these predictions and input variations, revealing the features with the most
significant impact on predictions for different outputs®. Unfortunately, despite its convenience,
LIME still lacks specificity for particular problems and may incur computational expenses,
especially with more complex models and datasets.

1.2Research Goals

This project aims to develop a specialized version of LIME by tailoring it to a specific issue —
detecting and identifying the location of pneumonia in lung X-ray scans. Specifically, it achieves
this by identifying pneumonia's location based on the pixel display that had the greatest effect
on the output prediction. It works similarly to LIME, but instead of training a new Al model on the
changes in prediction values, the algorithm will display the pixels that had the greatest net effect
on the prediction values of the original data point. This customization makes the algorithm a
powerful tool for medical professionals to use supplementally to identify pneumonia quickly and
easily.

A refined version of this algorithm could be used by medical professionals to finally introduce
artificial intelligence into healthcare. Although this paper uses chest X-ray scans to locate
pneumonia, this algorithm would be able to work just as effectively on locating cancers and
other medical conditions from computed tomography scans, MRIs, and more. Our XAl model,
designed for collaboration with doctors and nurses, can be used as an important tool to
significantly improve the identification of life-threatening conditions, potentially saving human
lives.

In practical terms, medical practitioners would upload X-ray scans, and in return, receive precise
predictions accompanied by visual analyses of the input data. To navigate ethical
considerations, our XAl model is positioned as a supportive tool rather than assuming full
responsibility for any misclassifications. So, a licensed doctor's presence would be mandatory,
emphasizing the program's role as a tool.

2. Materials
2.1 Dataset

We used the PneumoniaMNIST dataset for both training and testing the deep learning model. It
is a binary collection of labeled chest X-ray scans, with positive readings containing pneumonia
and negative readings being healthy scans. These images were compressed to a 28 by 28
pixels resolution to make working with the data faster and more efficient. The dataset has a
sample size of 5,856 images with 4,708 being training, 524 being validation, and 624 test
samples. The images within the collection are gray-scaled X-ray scans of patient’s torsos, with
their necks being at the top of the images and their lower abdomen being at the bottom. Figure
1 shows examples of images from the PneumoniaMNIST dataset.
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Figure 1: Example of Images from the PneumoniaMNIST Dataset

3. Methods
3.1 Reproducibility

The study was conducted in Google Collaboratory to ensure the ease of display and access to
the code. The program ran using the Intel ® Xeon ® running at 2.3 GHz, but the model was
trained with Google’s T4 GPU runtime. The model was programmed using PyTorch version
2.1.0 and Cuda 118.

3.2 Model Architecture

Our deep learning model is a seven-layer Convolutional Neural Network (CNN) created using
the PyTorch library. The network uses Rectified Linear Unit (ReLU) functions to introduce
non-linearity into the model, allowing it to learn complex patterns and relationships within the
data. The functions used in each layer of the model contain implicit regularization to ensure the
network does not overfit the data, which may lead to diminished testing results. We trained the
neural network with a 15-epoch training loop, using Stochastic Gradient Descent to update the
parameters of the neural network and backpropagation to ensure efficient training of an
accurate algorithm. Figure 2 shows the Convolutional Neural Network used in this study.
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Figure 2: Convolutional Neural Network Diagram
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3.3 XAl Algorithm

The custom-developed explainable artificial intelligence algorithm works similarly to the
well-known XAl: Local Interpretable Model-agnostic Explanations (LIME). True to the LIME
model, our algorithm is model-agnostic, meaning that this algorithm is added on top of an
already developed Al model instead of being written deep inside its layers. However, instead of
integrating the transparency code in the machine learning model's main body, a new algorithm is
created that takes the Al model as an input parameter. This makes the technique convenient to
apply to many different classification algorithms without making noticeable changes to the code.
Our deep learning model outputs a vector of positive and negative predictions based on how
likely it believes each output to be true. Changing an important pixel in an image will have
noticeable effects on these values, which is the foundation of the whole algorithm.

3.4 XAl Implementation Details

The function takes an image and Al model as parameters. Its first step then is to run the original
image through the convolutional neural network and calculate the initial prediction vector of the
image. In the next step, the function takes the first pixel in the image, sets its color value to
black, and runs that slightly altered image through the Al model again. The prediction values of
the image are stored in a matrix. The pixel color is then reverted to its original value, and the
image is restored to its starting picture. This is repeated for every single pixel in the image, with
the prediction values stored in the matrix. Figure 3 shows the pseudocode for the XAl used in
the study.

"model” function returns a number from 0-1 corresponding to the likely-hood
of pneumonia being present. “input image” is a gray-scaled image with pixel
values from (-1 corresponding to the darkness of each pixel (0 is black)

original Prediction < model(inputImage) > get Al prediction
for i in x-pixels do
for j in y-pixels do
inputlmageli, j] < 0 > set pixel color to black
new Prediction + model(inputImage)
predictionChange < original Prediction — new Prediction
pixzelImportancelmageli, j| < predictionChange
inputImageli, j| + original PizelValue > set pixel to initial color
end for
end for
display pixellmportancelmage;

Figure 3: Pseudocode for the XAl Used in the Study

The difference between the augmented prediction vectors in the matrix and the original
prediction vector is then calculated. This difference signifies the “effect” of each pixel on the
conclusion of the Al model as it shows the magnitude of change it had on the model's output. To
make these values easy to understand, they can be graphically represented as shown in Figure
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4. As seen in Figure 4, the magnitude of the effect of the pixel is shown from the least impactful
(dark purple) to the most impactful (bright yellow) in the corresponding pixel in the original
image.

Figure 4: Visual Representation of the Effect Each Pixel Has on the Deep Model Output

In the next step, the top pixels with the largest effect on the image can be found and displayed
on top of the original image to produce a visual aid for medical professionals to identify the exact
location of pneumonia in patients’ lungs. Figure 5 illustrates the top one hundred pixels with the
largest effect on the output of the model, overlaid on the original data image. Within the
algorithm, the number of overlayed pixels can be changed so that if the highlighted areas create
zones that are too broad to be useful, their sizes can be configured to match the user’s needs.

Figure 5: Top 100 Most Important Pixels on the Output of the Model Overlaid on the Original
Data Image
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3.5 Further Experimentation

To assess the robustness of the XAl algorithm in detecting pneumonia-related patterns under
different pixel perturbations, we conducted some further tests with our XAl model. By modifying
the pixel color to white and then its complement, we explored how the algorithm responds to
changes in pixel values and whether it maintains its interpretability across different color
transformations.

In these experiments, the algorithm was slightly changed while the test data point was held
constant. As opposed to the original algorithm where pixels were changed to be black, the pixel
color was first modified to be white and then modified to be the complement of the current color.
As the shades of each pixel were determined on a 0 to 1 scale, the complement was found by
taking the absolute value of 1 minus the current pixel value. The results of these experiments
were recorded.

The results of these experiments revealed that changing the pixel colors to black when creating
the augmented images highlighted the most notable pixels in the image in which pneumonia
would be found. The analysis of these results sheds light on the algorithm's sensitivity to pixel
alterations and its ability to identify pneumonia regions despite varying pixel representations
accurately. Furthermore, it provides insights into potential enhancements or adjustments needed
to improve the algorithm's resilience and interpretability in real-world clinical settings.

4. Results

The trained deep model was able to reach an accuracy of approximately 90% after the
15-epoch training and testing phase. Although not the primary purpose of the project, these
outcomes show the adaptability and strength of deep learning models and how they can be
applied to solve complex world problems.

4.1 Model Performance and Interpretability

The positive results we achieved with our XAl model can be attributed to the large amounts of
similar data found inside the PneumoniaMNIST dataset, which when paired with regularization
and multiple ReLU functions created a fast and accurate model to classify the x-ray scans. The
ReLU functions played a crucial role in this specific model by introducing non-linearity to an
otherwise linear algorithm. This enabled the neural network to analyze a broader range of
intricate variables that would have been overlooked in the absence of these functions. As a
result, the XAl was able to construct useful diagrams to explain how it reached its outputs.

4.1.1 Interpretation of XAl Visualizations

Figures 6 and 7 illustrate how our XAl model provides visual aids not only for the location of
pneumonia in lung X-ray scans but also for particular hotspots that doctors should be looking at
when reading scans. Specifically, Figure 6 shows a collage of the original X-ray images with red
highlights going along certain features in the image, highlighting the pixels the CNN deemed
important in its output.
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Figure 6: Most Important Pixels Displayed on 48 Images

If medical professionals analyze the images found in Figure 6 and still require additional
information to make an accurate diagnosis, additional assistance like the images shown in
Figure 7 could be displayed.

4.1.2 Analysis of Pixel Effects

Figure 7 plots how much each pixel affected the Al model’s output, which can be thought of as
the chance that each pixel is pneumonia-infected. The dark purple pixels which can be found on
the outside edges of the image signify a low or negligible chance of pneumonia. In contrast, the
green and yellow pixels in the center of the image demonstrate medium and high chances
respectively. The dark green pixels generally trace the shape of the lungs in the original image,
while bright yellow spots signify hotspots that should be closely examined for traces of
pneumonia.
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Figure 7: Relative Pixel Effect on Model Output

Combinations of the visual diagrams such as shown in Figures 6 and 7 can be used in hospitals
around the world to help with the diagnoses of patients with life-threatening conditions. The
algorithm can quickly and visually describe what areas of the image doctors should pay more
attention to, with the highlighted spots aligning with the likely location of the pneumonia.

4.2 XAl Function Performance Evaluation

The XAl function of the project produced results that could be useful to radiologists and other
healthcare professionals. As expected, pixels in the lungs were on average brighter than pixels
in other parts of the image, but still had hotspots to pinpoint the exact location of the pneumonia.

4.2.1 Experimentation to Identify Pneumonia Features

Additionally, an experiment was performed to deduce exactly what features in the dataset the
XAl was identifying as pneumonia. In general, pneumonia is identified in X-rays by locating
cloudy, milky-white spots inside the lungs, so setting a pixel inside of the lungs to black creates
the exact opposite of what pneumonia symptoms would appear to be. Hence, if previously light
pixels that drastically increased the pneumonia prediction in the Al are changed to black, the
switch will have a larger effect on the prediction vector than changing already dark pixels to be
darker, as dark pixels wouldn’t be interpreted as pneumonia initially in the first place.

4.2.2 Impact of Pixel Alteration on Prediction

To test this, the pixels were changed to white instead of black during the recalculation of
prediction values, and the difference between predicted pneumonia locations was stark. Figure
8 shows the predicted pneumonia locations of the algorithm when pixels were changed to white
instead of black.
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Figure 8: Original Image, Relative Pixel Importance, Top 100 Overlaid Pixels Changed to
"White" in Algorithm

In comparison, the original algorithm which substituted pixel colors for black produced a result
that better visualizes the location of pneumonia. Figure 9 shows the original algorithm where
pixels are changed to be black.

&

Figure 9: Original Image, Relative Pixel Importance, Top 100 Overlaid Pixels Changed to
"Black" in Algorithm

As can be seen in Figures 8 and 9, when the pixels were changed to white (Figure 8), the
model’s predictions were more affected by the changing of darker pixels to lighter pixels. This is
demonstrated by the clustering of highlights along the dark sections of the lungs rather than the
light sections as seen in Figure 9.

Where bright minds share their learnings

4.2.3 Algorithm Optimization for Desired Output

These results show that the most effective version of the algorithm to reach the desired output
substitutes every pixel in the picture with black pixels, one by one, rather than any other
gray-scaled color.

This fact makes logical sense, as when dark pixels in the lungs — which are initially seen to be
pneumonia-free — become white, or “pneumonia infested,” the prediction vector changes by a
larger amount than when already white or “pneumonia infested” pixels are kept white.

10
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This change in the algorithm produces a result that highlights the dark parts of the image red,
the parts of the image that are pneumonia-free. However, when changing light-colored pixels to
dark-colored pixels (as seen in Figure 9), the highlights grouped up around the light areas of the
lungs, correctly locating the true pneumonia-infected spots.

4.2.4 Clinical Relevance and Trust in Predictions

Further on, Figure 9 shows that the deep learning model is indeed considering the lighter pixels
in the lungs to be the tell-tale sign of pneumonia, just as doctors do. Doctors will now be able to
use this tool and look at the augmented X-ray scans and see that the model was looking at the
same details that they were when coming to their conclusion about the patient.

4.3 Evaluation of Prediction Patterns

When setting pixels to be their complements (as outlined in the methods section) as seen in
Figure 10, the augmented image resembles the effect of just setting dark pixels to be light. This
variation to the algorithm also gives incorrect locations of pneumonia, as it is effectively pointing
out the pixels that haven'’t yet been infected by pneumonia. Figure 10 shows images that are
similar to the ones in Figure 8, as the dark parts of the lungs are highlighted rather than the light
parts.

|

Figure 10: Original Image, Relative Pixel Importance, Top 100 Overlaid Pixels Changed to
"Complement Pixel"

This aligns with the researcher’s expectations because, in medical contexts, doctors identifying
a white splotch in a pair of lungs is a stronger indicator of pneumonia compared to a random
dark spot in a lighter area. This variation to the algorithm also gives incorrect locations of
pneumonia, as it is effectively pointing out the pixels that haven’t yet been infected by
pneumonia. These results show that the most effective version of the algorithm to reach the
desired output substitutes every pixel in the picture with black pixels, one by one, rather than
any other color.

4.4 Assessment of False Predictions

In cases where the deep model predicts that there is no pneumonia, the highlights on the image
look completely different than when it predicts that there is pneumonia. Figure 11 shows
examples of what the XAl will output when it predicts “False” — that there is no pneumonia.

11
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Figure 11: Top 100 Overlaid Pixels When Prediction Was Negative ("No Pneumonia")

Although the Al still focuses on the lighter pixels, it highlights more of the spine and the bones
rather than specific locations in the lungs. The images in Figure 11 have clear highlights going
up along the spine, ones that are not present when it predicts that there is pneumonia; the
highlights are grouped up along the bottom of the images where other organs are found. Either
one or both of these features are present in all of the false predictions and can be easily noticed
by doctors. The XAl likely behaves this way due to the lack of lighter pixels found in the lungs
when there is no pneumonia present in the image, so the pixels that look the most like
pneumonia are the bones surrounding the lungs.

4.5 Conclusion and Clinical Implications

When the Al produces an inaccurate prediction, it is easily identifiable through visual inspection.
As seen in Figure 12, if the prediction is unreliable, the highlights have no general structure and
aren’t found in the lighter regions of the lungs. For experienced medical professionals, this
would immediately raise red flags, and the Al prediction would be nullified. This adds an extra
layer of security to the XAl, making sure that any incorrect readings are obvious to detect.

12
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Figure 12: Top 100 Overlaid Pixels When Prediction Was Incorrect
5. Discussion & Acknowledgements

5.1 Effectiveness and Adaptability of the XAl Model

The developed learning model demonstrated a 90% accuracy in diagnosing lung conditions. Our
explainable algorithm (XAl) was able to identify important pixels in the image that most
influenced the output of the machine learning model, aiding as a tool for researchers to use to
identify pneumonia location or existence. The substitution of different colors of pixels allowed us
to understand the methodology the learning model takes when determining an output, with
substituting black values for the pixels achieving the best result in terms of highlighting points of
interest for pneumonia on the x-rays. The created XAl is model-agnostic and can be easily
implemented in other fields of healthcare, not being limited to convolutional neural networks. A
shortcoming that this algorithm has is that it runs in O(n?), which means it has to complete many
computations to achieve its results and will take a long time to process the image as the
resolution increases.

5.2 Future Enhancements and Explorations

This XAl model can still be improved in the future, and the exact accuracy of the pneumonia
location prediction could be further explored. Trying this experiment on the same dataset but
with higher resolution could provide better data about algorithm speed, efficiency, and precision
of the predicted location. Although the red highlights were in the correct pneumonia-infected
areas, the pixel density was so small that it was more showing an area of interest than exact
pinpoint locations. With a larger and higher-resolution image, though, it would be interesting to
see if the model highlighted the exact, miniscule white spots in the lungs that are symptoms of
pneumonia, or if it would behave in the same way and show general areas.

If the speed of detection dramatically decreased, it would be intriguing to examine a recursive
function that segments the image into large sections and then decreases the size of those
sections depending on the effect their masking had on the prediction. This would allow large,

13
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unimportant sections of the image to be ignored, and the time spent computing to be decreased.
While these new avenues have not yet been explored, | would like to continue this study and
see exactly how impressive the results could be when using new and interesting techniques to
analyze the behavior of deep learning models.
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