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Abstract

Pulsars are a unique type of rotating neutron star that emit pulses of radio emission in beams
that sweep across Earth, allowing for the detection of their repetitive pulses. Traditionally, pulsar
candidates have been identified through manual signal processing. As data volumes increase,
automated methods, such as artificial neural networks, have been proposed. In this study, the
random forest classifier – an algorithm that takes the majority output of multiple decision trees –
was used to accurately separate real pulsar signals from radio frequency interference (RFI) and
other noise. These candidates can then be further studied and allotted telescope time to confirm
them as pulsars. 1,639 real pulsar examples and 16,259 samples of RFI/noise from the HTRU2
survey were used to create the model. Features of the data used include the mean, standard
deviation, excess kurtosis, and skewness of the integrated pulse profile and DM-SNR curve.
The model demonstrated a 98% accuracy in identifying pulsars. The excess kurtosis, skewness,
and mean of integrated profile were identified to be the most important factors in differentiating
between pulsars and interference. This tool could be used to filter data from future surveys to
reduce the number of candidates that need to be processed by humans.

Introduction

Pulsars

Pulsars form from neutron stars. A neutron star is the leftover core from when a star with a mass
between 8 and 20 solar masses dies in an explosive supernova. This core itself is extremely
massive, around 1.5 to 3 times the mass of the sun, and very small, typically only around 20 to
24 km in diameter (roughly the size of a small city block).1 These features contribute to a
pulsar’s high density, comparable to that of atomic nuclei, second only to black holes.

One of the most notable features of pulsars is their rapid spin rate. This spin is left over from the
original rotation of the living star from which the pulsar formed. As a star collapses into a
neutron star, its spin rate increases dramatically: as the size of the star shrinks significantly, the
rotation rate must increase to conserve angular momentum.
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Pulsars are also highly magnetic, with a magnetic field 100 million to 1 million billion times
stronger than Earth’s magnetic field.1 A neutron star with the right combination of extreme
magnetism and rapid spin is described as a pulsar.

The light pulsars emit can be attributed to the rotating magnetic field. This creates an electric
field where charged particles move and form an electric current. As these charged particles are
accelerated to high speeds by the magnetosphere, the region above the surface of a pulsar, the
pulsar radiates visible, radio, and x-ray light. Pulsars emit these beams of light from their north
and south magnetic poles, which typically differ from their axis of rotation. This allows for their
beams of light to be viewed as pulses from earth, as the coherent light (emitted like a laser,
rather than a lightbulb) sweeps across the earth. If the magnetic poles aligned with the rotation
poles, the light would be viewed as a steady stream, rather than as pulses, as the beams would
not move as the star rotates.

Pulsars are useful tools in studying the universe. For one, they are useful in the study of
extreme states of matter due to their high density, which creates what astronomers call a
“nuclear pasta” as atoms arrange in unusual shapes and patterns. Within neutron stars, atoms
arrange themselves in patterns such as flat sheets, spirals, and small nuggets that are not seen
anywhere else.

While pulsars reduce speed as they lose energy to light, their rotation rate changes at a slow,
almost imperceptible rate. They are therefore so dependable that astronomers can predict when
a pulse will occur years in the future to an accuracy of 100 nanoseconds. This accurate,
dependable spin rate makes pulsars useful in finding exoplanets, as a nearby planet will often
cause noticeable disturbances in the spin of a pulsar. In fact, the first planet discovered outside
our solar system was discovered orbiting a pulsar. The constant spin of pulsars as they move
through space also makes them a useful tool in measuring cosmic distances, as they move
through space while blinking a known number of times per second. Finally, pulsars are useful in
searching for gravitational waves, which also create disturbances in the regularly timed pulses.

Pulsar Detection

Pulsars are extremely rare, and only around 2,000 have been detected to date. A typical method
for detecting pulsars are all sky surveys, where a telescope scans the entire sky, and looks for
light that flickers over time. The majority of pulsars have been discovered by the Parkes radio
Telescope in Australia, but other radio telescopes, such as the Arecibo telescope in Puerto Rico,
Green Bank telescope in West Virginia, the Molonglo telescope in Australia, and the Jodrell
Bank telescope in England have also made contributions. The Fermi Gamma Ray Telescope
has also detected gamma-ray-emitting pulsars.
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Each pulsar has a unique spin rate and radio pulse profile, both of which are used in their
detection. Traditionally, pulsar candidates have been identified through manual signal
processing, where humans visually identify the emission spectrum from the data collected by
telescopes.2 Not only is this process time consuming and mentally demanding, but it also
introduces human error into pulsar identification. However, as the technical capabilities of pulsar
searches continue to grow and change - for example through increasing bandwidth, sky
coverage, sensitivity, and most notably, frequency resolution - the number of candidates began
to rise.3 This makes manual processing no longer feasible. In response, some data filtering tools
have been created, intending to filter out most of the noise and interference before signals reach
human eyes. However, even these filtering methods are no longer practical, as they are now
returning more viable candidates than can be manually processed. The lack of an efficient and
accurate pulsar classification method has created this ‘candidate selection problem’.3

Machine Learning

Machine learning is a branch of computer science and artificial intelligence that uses data and
algorithms to imitate the way that humans learn.4 It allows computers to learn without being
explicitly programmed, in a way that continuously improves their accuracy.

The learning system of a machine learning algorithm can be split into a decision process, an
error function, and a model optimization process.4 In the decision process, the model processes
training data to create the model, and then uses the patterns and correlations it identified in the
training process to make a decision, for example a prediction or classification, about new test
data.5 An error function refers to the process of assessing the accuracy of the model. Finally, the
model optimization process describes the process of fine-tuning the algorithm to better fit the
training data to ultimately attain a higher accuracy in the testing phase.

Machine learning can be subdivided into supervised and unsupervised machine learning.
Supervised machine learning is a subset of machine learning where the machine experiences
the training examples with labels or targets. These labels help the algorithm correlate features
and ultimately identify patterns in the dataset. Supervised learning is especially useful in solving
problems that fall under the categories of classification or regression. In classification problems,
the machine predicts the most probable category, class, or label for new examples, while in
regression problems, the machine predicts the value of a continuous response variable.
Methods used in supervised learning include neutral networks, linear regression, logistic
regression, random forest, and support vector machine.4

Unsupervised learning refers to a model training process where the training data does not have
attached labels. Instead, the machine looks for patterns in the data.4 Unsupervised learning is
useful in solving problems that require clustering, as the machine can group data points with
similar features.
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Decision Trees

A decision tree classifier is a supervised machine learning algorithm that uses a set of rules to
make decisions, much like humans.6 At the start, called the root node, is the original collection of
training data. Decision trees use dataset features to create a list of yes/no questions. Each
question is marked with a node. The questions continuously split the dataset into smaller
subsets, where all the data points that correlate to the answer ‘yes’ branch into one group, and
the remaining data points branch to create a second group.6 In this fashion, the data becomes
organized into a tree structure.

This splitting of nodes continues until there are no more rules to apply or no data points left.
These final nodes are called leaf nodes. At this point, each leaf node must be assigned a class.
If the data in a leaf node is fully isolated by class (all of the data points in the training set are in
groups that only contain their same label), it is referred to as a pure leaf node, where the class is
assigned as the common label. However, leaf nodes are often not 100% pure, and are thus
called mixed nodes. In this case, the algorithm assigns the most common class among the data
points in the node as the common label.6

Ideally, a decision tree will have the smallest number of splits possible, while maintaining the
highest accuracy. However, this approach is computationally infeasible, especially as larger
datasets are used, and the time to build the tree grows. The next best approach in creating the
best tree is through the greedy approach, which attempts to make the locally optimal decision at
the current node, rather than the best decision for the tree overall.6 In making the best split,
decision trees aim to divide the dataset into the smallest subset possible, so the goal is to
ultimately minimize the loss function. Loss functions are mathematical equations, known as
criteria, that calculate the information gain when a node is split. Criteria are used to decide
which features are most efficient to split on. Three main loss functions used in decision tree
algorithms are Gini, Entropy, and Log Loss. All three functions are measurements of error.

Decision trees are useful in solving both classification and regression tasks. They allow for easy
interpretability, as decision trees are simple and can be easily visualized and understood. They
are also useful for their data robustness, since they can process numerical, categorical, and
boolean data. Decision trees also readily provide information about the data and the relative
importance of various features, as the most important features are used to split nodes higher up
in the tree in accordance with the need to create the most efficient splits possible.

Random Forest Classification

Random forests are a collection of independent decision trees that act as an ensemble.7 When
a test data point is run through a random forest, each tree will make its own class prediction
based on its unique model. The class with the most votes (the class the majority of the trees
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predict) becomes the entire forest’s prediction. The underlying reasoning is that a group of
relatively uncorrelated trees acting as a group will outperform any individual tree.7,8

The low correlation between individual trees is key to the accuracy of the random forest. It
ensures that an error in one tree will not be matched in other trees, and that collectively, the
random forest is then protected from individual errors.

Two methods random forests use to ensure this diversity in trees are bagging and feature
randomness.

Bootstrap Aggregation, also known as bagging, is the process where each tree uses a unique
sample of the dataset to build its tree through random sampling with replacement. Rather than
splitting the entire dataset into smaller chunks for each tree to use, random sampling with
replacement allows each tree to be trained on a dataset equal to the size of the entire dataset.
However, instead of feeding each tree the entire original dataset, each tree chooses a random
sample of data points (equal to the total number of data points in the dataset) with replacement.7

Since the trees sample with replacement, duplicate data points can be sampled and used to
train a single tree.

The second method used to ensure a low correlation between trees is feature randomness. In a
regular decision tree, all the features of the dataset are considered when splitting a node, and
the split is made using the feature that will create the greatest separation between the two
resulting branches. However, in random forest trees, each tree can only determine the best split
from a randomly selected subset of the dataset features. This allows for even more variation
among the trees in the forest.7

Ultimately, random forests serve as highly accurate and efficient models for solving classification
and regression problems, and can generally produce better results than any single decision
tree.8

Machine Learning in Pulsar Identification

Various machine learning methods have recently been proposed to address the growing need
for automation in pulsar classification. The majority of these algorithms are based on artificial
neural networks (ANNs).

ANNs are computing systems inspired by the biological neural networks used for decision
making in the human brain. They are especially useful when solving problems related to pattern
recognition and classification, approximation, optimization, and data clustering.9 ANNs use a
large collection of units or nodes that work as artificial neurons, and each act as individual
simple processors that operate in parallel. Neural networks contain an input layer, one or more
hidden layers, and an output layer. Each node is connected to every other neuron in the layers
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above and below it by means of a connection link, and each has a weight and threshold.9, 10 If
the output of any individual node is above this threshold value, that node is activated and sends
data to the next layer of the network. If the threshold is not met, no data is passed along to the
next layer of the network.9

ANNs have been frequently proposed as a solution to automating the classification of pulsars.
For example, Bates et al. (2012) developed a neural network that was able to detect 85% of real
pulsar candidates over two years of data, from the mid-latitude portion HTRU survey. Candidate
parameters used included the pulse period in milliseconds, the pulse width, the DM in cm−3

parsecs, the signal-to-noise ratio of the detection, and a unique 𝜒2 value calculated from fitting
the pulse profile with a sine function.11 However, their study did not utilize a representative
sample of the pulsar population during the training process, and used a single artificial neural
network for the detection of different types of pulsars, which likely contributed to the lower
accuracy.

Eatough et al. (2010) also implemented a neural network in a re-analysis of the data from the
Parkes Multibeam Pulsar Survey (PMPS), and was able to discover a previously unknown
pulsar. This neural network was trained using a particular set of scores to automatically identify
credible pulsar candidates. The tool recovered  92% of pulsars present in a test sample of
approximately 2.5 million candidates. Shortcomings included the poor training of the ANNs on
MSPs, unbalanced training sets, and abnormal candidate plots generated by search software,
which made it unlikely that the tool would identify MSPs.12

A third neural network by Morello et al. (2014), the Straightforward Pulsar Identification using
Neural Networks (SPINN), was developed to process HTRU survey data. The algorithm
identified every known pulsar in the southern survey data with a false positive rate of only
0.64%. It also identified four new pulsars in a re-processing of the intermediate galactic latitude
area of HTRU, three of which have spin periods shorter than five milliseconds. Pulse features
used in developing SPINN include the S/N of the folded profile, which is a measure of signal
significance, the ratio between period and DM, the intrinsic equivalent duty cycle of the pulse
profile, which is the ratio of a pulsar’s pulse width in seconds to its spin period, a measure of the
validity of DM, the persistence of the signal through time, and a measure of the variability of the
pulse shape during the observation.13

The goal of this study is to explore the implementation of another machine learning tool, the
Random Forest Classifier, as a solution to the pulsar ‘candidate selection problem’. In addition
to ANNs and other previously proposed tools, the Random Forest Classifier can provide an
efficient and accurate solution to identifying pulsar signals from a large sample of survey data.

Methods
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Dataset

In developing our tool, we used a sample of pulsar candidates from the South High Time
Resolution Universe Survey (HTRU2).14 Data for the southern hemisphere portion of the HTRU
survey was collected using the Parkes Multibeam Receiver. The dataset used came from the
UCI Machine Learning Repository. The dataset contains 17,898 total data points including 1,639
real pulsar examples and 16,259 samples of RFI/noise. The disparity between the number of
real pulsar examples available versus the interference signals speaks to the rareness of true
pulsar signals. Features of the data we used included the mean, standard deviation, excess
kurtosis, and skewness of the integrated pulse profile and DM-SNR curve.

The integrated pulse profile is a superposition of hundreds of thousands of individual pulsar
pulses. The integrated profile is unique to each pulsar and can be recreated at any time.15

The Dispersion-Measure-Signal-to-Noise-Ratio curve, or the DM-SNR curve, is used to account
for the dispersion of pulses. Radio pulses arrive at different times across different radio
frequencies due to the ionized interstellar medium radio signals travel through before they reach
Earth.16 This delay across frequencies is referred to as dispersion. Astronomers fit the shape of
the delay when creating the pulse profile to compensate for its effect; however, there remains an
uncertainty with the fit. This uncertainty is expressed through a DM-SNR curve.

The mean, standard deviation, excess kurtosis, and skewness of both the integrated pulse
profile and the DM-SNR curve were used as features of the radio signals in training the machine
learning model.

The mean refers to the average. Mathematically speaking, it is the sum of a collection of values
divided by the number of values in the collection. In reference to the integrated profile, the mean
refers to the average pulse energy associated with the profile. The mean of the DM-SNR curve
is the average of the curve.

The standard deviation measures how much individual data points vary from the mean. For the
pulse profile and DM-SNR curve, it measures how much individual pulses differ from the mean.

The kurtosis and skewness both refer to the shapes of the curves. Excess kurtosis describes
how tailed a distribution is relative to a normal distribution of data. As in Figure 1, a curve with
fewer outliers would appear thin-tailed, and would have a negative kurtosis (less than 3), while a
curve with many outliers would look fat-tailed and would have a positive kurtosis (greater than
3).17 A positive skew indicates that the curve is left-modal and skewed to the left, and a negative
skew suggests that the curve is right-modal and is skewed to the right, as seen in Figure 2.
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Figure 1. Depiction of excess kurtosis.18

Figure 2. Depiction of skew.19

Python Libraries and Packages

In creating the random forest classifier, we employed several python packages. Pandas, an
open source data analysis and manipulation tool, was used to format and visualize the data
from a CSV file. The Scikit-Learn (sklearn) python machine learning library was used in creating
the bulk of the program. The method train_test_split was used from sklearn.model_selection to
split the dataset into training and testing data, with 70% of the data used for training, and 30%
used for testing. The method RandomForestClassifier was used from sklearn.ensemble to build
the random forest. The metrics package from sklearn was used to calculate the accuracy of the
random forest classifier, and the tree package was used to visualize individual estimators (a
single decision tree). Finally, the matplotlib.pyplot library was used to create graphs and plots to
visualize the impacts of various hyperparameters on the accuracy of the classifier. The
matplotlib and seaborn libraries were also used to visualize relative feature importance.

Hyperparameter Evaluation Metrics

Hyperparameters are adjustable parameters that are set before algorithm training that makes it
possible to control the model training process.20

In assessing the accuracy of the model as different hyperparameters were tuned, the evaluation
metric Classification Accuracy was selected. Classification accuracy is defined as the ratio of
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the number of correct classifications, where the class predicted by the model is the same as the
class given in the input dataset, to the total number of predictions made by the model. This ratio
is bound between 0 and 1.21 This evaluation metric was selected since the task was binary in
nature (pulsar vs. non-pulsar), and all the predictions and prediction errors were therefore
equally important. The results from this metric are illustrated as a plot.

The accuracy of the model relative to various hyperparameters was also visualized through a
Receiver Operating Characteristic Curve (ROC curve). A ROC curve is a useful evaluation
metric for supervised binary classification problems. In creating an ROC curve, the true positive
rate (TPR) is plotted against the false positive rate (FPR). It allows the tradeoff between
sensitivity, the TPR, and specificity, the FPR to be visualized. As in Figure 3, the true positive
rate is the ratio of “true” events correctly identified by the algorithm to the total number of “true”
events in the testing dataset. The false positive rate is the ratio of “false” events that were
incorrectly classified as “true” events to the total number of  “false” events.21 In the best-case
scenario, the true positive rate should be 1, while the false positive rate is 0. In the context of
pulsar classification, the true positive rate refers to the number of pulsars correctly identified as
pulsars, while the false positive rate refers to the number of non-pulsars wrongly identified as
pulsars. ROC curves are especially useful in comparing the performances of different
supervised learning algorithms, in this case various random forest classifiers with different
hyperparameters, by selecting the algorithm with the greatest area under the curve.

Figure 3. True positive rate and false positive rate equations. TP represents true positive, FN
represents false negative, FP represents false positive, and TN represents true negative.22

The greater the area under the ROC curve (AUC), the more accurate the classification model.
The AUC is found by calculating the area under the curve from (0,0) to (1,1) using integral
calculus. AUC is a value from 0.0 to 1.0. An AUC of 0.0 means the model has classified 100%
of the test data incorrectly, while an AUC of 1.0 means that 100% of the data was classified
appropriately.22

In using both metrics, the aim was to understand the accuracy of the model in identifying
pulsars, but also to ensure that the false positive identification rate remained low. If the false
positive value was to grow, and increasing numbers of false signals were incorrectly identified to
be real pulsar signals, manpower and telescope time would be allotted to search in unnecessary
places, thus defeating the purpose of this tool in reducing the time to accurately identify pulsars.

Hyperparameters
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Various hyperparameters were tested in order to increase the accuracy of the classifier.
min_samples_leaf, min_samples_split, max_leaf_nodes, criterion, and n_estimators were the
parameters tested. Each of these hyperparameters were tested individually to visualize the
impact that increasing or decreasing their values had. During each test, the remaining
hyperparameters were kept at their default values, with n_estimators = 100 across all tests.
Several correlations were identified.

5.31 min_samples_leaf

The min_samples leaf hyperparameter determines the minimum number of samples required to
be at a leaf node, the final nodes that make up the base of each decision tree.23 Values tested
for min_samples_leaf were 1, 2, 5, 10, 50, and 100. Plotting these values against their
respective accuracies illustrated an exponentially negative correlation. As the values get bigger,
the accuracy of the classifier decreases. Setting min_samples_leaf to 1 gave the highest
accuracy of 0.9782 and the second highest AUC of 0.9170, indicating that while the model is
highly accurate, it is also maintaining the necessary low false positive rate. The observed results
are likely because lower values of min_samples_leaf allow the tree to have more flexibility, and
allow it to create more splits and have more individual leaf classes at the base of the tree, thus
making it more accurate when tested.

Figure 4. Accuracy plot and ROC varying min_samples_leaf hyperparameter.

min_samples_split

The min_samples_split hyperparameter determines the minimum number of samples needed to
split an internal node of a tree.23 The values 2, 5, 10, 50, and 100 were tested, but demonstrated
no clear correlation. As visualized in Figure 5, the AUC remained uniformly high between 0.9223
and 0.9248. For that reason, this parameter was not used in the final set of hyperparameters.
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Figure 5. Accuracy plot and ROC varying min_samples_split hyperparameter.

max_leaf_nodes

Max_leaf_nodes is the hyperparameter that sets the limit on the splitting of nodes to reduce
depth of tree, which reduces overfitting. A greater value of max_leaf nodes will create a deeper
tree with more splits.23 Values tested were 10, 20, 50, 100, 150, 200, 500, 750 and 1000. There
was initially a positive correlation when plotting max_leaf_nodes versus accuracy. In Figure 6,
as the number of leaf nodes grew, the accuracy also increased, with the greatest increase in
accuracy between 10 and 20 leaf nodes. However, the accuracy dropped suddenly after 200
leaf nodes. The AUC at all tested values remained high (> 0.88), with the greatest AUC of
0.9054 when max_leaf_nodes was set to 200. As the max_leaf_nodes value grows, the tree is
able to create more splits and become more constrained to the training data, which allows it to
make more accurate decisions on the test data. However, if the value becomes too large, the
tree can begin overfitting the training data to such precision that it is not able to accurately
address variances in the test data, and thus begins making incorrect classifications, which led to
the observed drop in accuracy.

Figure 6. Accuracy plot and ROC varying max_leaf_nodes hyperparameter.
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criterion

Criteria, as mentioned prior, are mathematical equations used to determine the best split at a
node, and are used to maximize the information gain with each split.23 We tested the three main
criteria, ‘gini’, ‘entropy’ and ‘log loss’ to see which yielded the highest accuracy. Gini is
calculated by subtracting the sum of the squared probabilities of each class from one.24 Log
Loss is a formula for calculating information gain, mostly used to train binary classifiers.25.
Entropy is a third criterion formula for calculating information gain. Lower entropy correlates to
increased model accuracy.26 The results in Figure 7 showed that ‘gini’ was the most accurate
criterion for our model.

Figure 7. Accuracy plot and ROC varying criteria hyperparameter.

n_estimators

n_estimators refers to the number of estimators, or independent decision trees, present in the
random forest. There is a pre-existing understanding that as the number of estimators are
increased, the accuracy will also increase as errors in individual trees are more frequently
canceled out. This occurs only at the expense of run time, as increasing the number of
estimators will take the processing unit more time to build the random forest.27 Since this
correlation is well known, n_estimators was the last hyperparameter tuned, after the other
hyperparameters and their values were already optimized. The accuracy of the random forest
was tested with 1, 2, 5, 10, 20, 50, 100, 200, 300, 400, and 500 estimators. Plotting the resulting
accuracies, as in Figure 8, demonstrated that the accuracy appears to plateau after 50
estimators. The AUC also remains high and fairly constant after 50 estimators, only ranging
slightly from 0.9145 to 0.916.
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Figure 8. Accuracy plot and ROC varying n_estimators hyperparameter.

Results and Discussion

We looked at trends in the hyperparameter versus accuracy plots and ROCs to determine the
parameters used in our final model. After fine tuning some of the parameters, the final values
were set as follows: n_estimators = 50, min_samples_leaf = 1,  max_leaf_nodes = 200, criterion
= 'gini'. Decision tree 0 of the resulting random forest is depicted in Figure 9.

In assessing the accuracy of the model using the evaluation metric Classification Accuracy as
defined prior, our model demonstrated an accuracy of 0.9812. There are slight variations in the
accuracy ranging from 0.983 to 0.976 as the forest is re-built, as no two forests are identical.

Figure 9. Full visualized decision tree 0 of the random forest.
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Feature Importance

As visualized in Figure 10, in ranking feature importance in differentiating between pulsars and
non-pulsars on a scale from 0 to 1, the excess kurtosis of integrated profile was ranked as the
most important feature with a relative feature importance of 0.440654. Next were the skewness
of integrated profile at 0.230119, the mean of integrated profile at 0.154855, the mean of
DM-SNR curve at 0.060964, the standard deviation of DM-SNR curve at 0.046054, the excess
kurtosis of DM-SNR curve at 0.030565, and the skewness of DM-SNR curve at 0.021551. The
least important feature in determining whether a signal is from a true pulsar or from a form of
interference was the standard deviation of integrated profile at 0.015239.

Figure 10. Ranked relative importance of radio pulse signal features.

Figure 11 provides an insight into how an individual tree creates splits in order to create the
greatest separation between the pulsar and non-pulsar classes. The root node of this tree split
based on feature 4, the mean of DM-SNR curve, indicating that the mean of DM-SNR curve was
the most important feature out of the random subset of features used to build decision tree 0 in
differentiating the pulsars from the non-pulsars in the random data points used to create that
tree. Feature 5, the standard deviation of DM-SNR curve, and feature 3, the skewness of
integrated profile, were the next two most important features, as they were then used to split the
second layer of the tree.
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Figure 11. Top nodes of decision tree 0 of the random forest.

The model appears to be very robust and can produce results with similar accuracy even with
fewer features. When removing the skewness of the DM-SNR curve from the model, the
accuracy remained very stable at 0.9786. When removing both the skewness of the DM-SNR
curve and the standard deviation of the integrated profile from the model, the accuracy
remained at 0.9781. With the three least important features, the  skewness of the DM-SNR
curve, the standard deviation of the integrated profile, and the excess kurtosis of the SM-SNR
curve,  removed, the accuracy of the model stayed constant, at 0.9782. This broadens the
applications of this machine learning model in pulsar surveys as the algorithm can be used with
very high accuracies even in cases where not all eight features’ values are recorded or known.

Conclusion

Our model proves the effectiveness of random forest machine learning classifiers as a solution
to the pulsar candidate selection problem. Our model was able to identify pulsars to an accuracy
of 98% based on the mean, standard deviation, excess kurtosis, and skewness of the integrated
pulse profile and DM-SNR curve of radio pulse signals from the South High Time Resolution
Survey.

The optimal hyperparameters used to achieve this accuracy were n_estimators = 50,
min_samples_leaf = 1,  max_leaf_nodes = 200, criterion = 'gini'.

Our results demonstrate that the excess kurtosis, skewness, and mean of integrated profile
were the three most important factors in differentiating between real pulsar signals and
interference or other noise.

Limitations
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While this model has demonstrated a high accuracy in classifying real pulsar signals from radio
data, it has not been trained to specifically identify rare millisecond pulsars (MSPs). Thus, this
tool would likely not be useful in searches for MSPs.

Additionally, since the real labeled pulsars in the training data came from the signals emitted by
typical pulsars, this model would not be able to successfully identify or flag novel and unusual
phenomena that might otherwise be detected through manual signal processing by human eyes.
Thus, human processing should still be involved in the pulsar identification process at some
level, and automated methods such as the one proposed here should only act as a first pass
over the data.

Finally, decision tree classifiers are best built using balanced datasets, where there are an equal
number of examples that come from each class (i.e., an equal number of pulsar and non-pulsar
data points). One of the evaluation metrics used, classification accuracy, is also most accurate
when applied to balanced datasets.21 However, the dataset used in training this model was very
biased, with significantly more spurious examples than true pulsar examples, as there were
16,259 samples of RFI/noise but only 1,639 real pulsar examples. This has negative
implications on the random forest model as well as the calculated accuracy of that model. The
model could therefore be improved if a more balanced dataset was used.

Future Work

This tool can be applied to a broad spectrum of future surveys, for example those conducted by
the future Low Frequency Array (LOFAR), the Five Hundred Meter Aperture Spherical
Telescope (FAST),  and the Square Kilometer Array (SKA), all of which are expected to produce
vast amounts of signal data.12 It can be used as a first pass over the recorded data in order to
significantly reduce the number of possible pulsar candidates that require manual observation.
The high accuracy of this classifier decreases the likelihood of missing promising pulsar
candidates during the first pass over the data.

In order to continue to improve this model, it should be trained on larger labeled datasets in
addition to the one provided by the HTRU2 survey.

To increase the likelihood of identifying MSP candidates, a separate machine learning classifier
should be used that is trained on a dataset where MSPs are explicitly labeled. That will ensure
that the rare and unique characteristics of MSPs will be clearly identified by the machine
learning tool.
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