
Analyzing the Multi-Faceted Process of 3-link Robot
Arm Simulation

Arya Paliwal

Summary

The simulation of robot arms are an integral component of robotics engineering as they allow us
to test and alter conditions of the system and troubleshoot errors. This paper outlines the
process of constructing a 3-link robot simulation, from the basic concepts to the main algorithm.
The different shapes of graphs produced by varying different parameters (i.e. number of
obstacles, location, coefficients)are also analyzed to determine the main contenders influencing
an algorithm’s success. The efficiency and drawbacks of given parameters and algorithms are
also analyzed to create a paper that provides a comprehensive view of the simulation process
and potential keys for exploration. Individuals seeking an improved understanding of robot arms
and their algorithms and potential applications shall benefit from this report.

1



1. Coordinate Transformations

Coordinate Transformations are a foundational concept in robotics and engineering. Given x, y
coordinates, a rotation of the regular plane by angle θ will result in new coordinates expressed
below. This concept shall be useful in the remainder of this report.

Note: Blue lines indicate the tilted x,y plane.

2. Kinematics

2.1 Forward and Inverse Kinematics

The forward kinematics provides the position and directional vector for the end effector of
the robot arm. Below is the diagram for the end effector, along with the x and y
coordinates. Inverse kinematics determines the configurations required to reach a goal.
In some cases, inverse kinematics results in two solutions. The next part of the algorithm
checks if the angles as determined by inverse kinematics are within the range - π and π
inclusive;

2.2 Jacobian Matrix Derivation for a 3-link robot arm

A robot’s observed motion is the result of infinitesimal steps of the end effector and joints
in a direction. Taking the time derivative results in the linear and angular velocity of the

2



joints and the end effector. The Jacobian determines the linear and angular motions of
the end effector via solely the motions of its joints.

Given the end effector coordinates:

Taking derivative of end effector coordinates with respect to each joint angle finds the
linear velocity of each coordinate:

2.2 Inverse Jacobian Algorithm

The inverse Jacobian determines the joint velocities required to generate a particular
velocity of the end effector. Note that the inverse Jacobian is the reciprocal of the
Jacobian Matrix.

3. RRT Algorithm

3.1 Algorithms outline

The algorithm starts when the ‘tree’ is initialized by adding a start node as its root. Nodes
are randomly generated within the boundaries, in this case -1.5 to 1.5. They are tested to
determine if the node has reached a region within the radius of the threshold rather than
testing if the node exactly matches the goal.

3



The nearest node is extended in the direction of the target. After the generation of a new node,
the program checks if it lies within an obstacle, and returns false if that is the case.

3.2 Choosing a random configuration vs goal configuration

Generating new nodes is influenced by coefficients α and β

4



The length of each iteration is dependent on a value between 0 and 1. Small alpha
values increase precision at the cost of time(iterations). Smaller steps are taken,
increasing the likelihood of a solution configuration for the end effector to reach the goal.
Larger alpha values may reduce the time, but in the case of large obstacles, will either be
unable to find a solution, or take a path that is inefficient.

The probability of a sample being in the direction of the goal or a random sample
depends on beta. Similar to alpha, a high value of beta might increase efficiency, so long
as there are not many obstacles. A low value of beta might cost time, but result in a valid
configuration.

It can be observed that the success of the algorithm given the beta value depends on 3
factors:

● Spatial Arms of blocks
● Spatial Area of robot arms
● Alpha value

3.3 Choose the distance comparison as the angles instead of x-y coordinates

One has two choices, use x,y coordinate distances to find the length taken by each joint
to reach the desired configuration, or use angles to determine the angle changes
required to reach a particular configuration. Angles are more convenient to determine the
‘energy’ or time required to form a configuration. For example, the end effector wishes to
move a small distance x in a direction, say x-direction; however, the joint angles change
drastically (illustrated in figure below), providing a clearer understanding of the energy
required to move from one formation to another.

5



Original configuration (blue) and two new possible configurations(yellow)

3.4 Creating the tree data structure

Dictionaries are used to organize the parent and child points and angles. For instance the
key (10, 20, 30) would reference (10, 20, 30): (20, 40, 60)  in the dictionary. Note that the
joint angles with their corresponding x,y coordinate of the end effector is stored in a list.
As the algorithm chooses a point(regardless of its bias towards the goal or random
sample), it first creates another key corresponding to the selected point; then, it stores
the coordinate and the corresponding joint angles as the ‘value’ in the key of the parent
point. This continues until the final sample is within the threshold of the goal.

3.5 Finding the final path from tree data structure

Find the path from the end goal to the start by tracing back the coordinates. For instance,
if the end goal was met at the joint configuration(10, 20, 30), then one would search for
the key containing (10, 20, 30)(i.e. parent node), this parent node is then a ‘value’ for
another key (or parent node) in the dictionary. Each time a parent node is recovered, it is
added to a path list. The algorithm while the parent node is not equal to the start node.
The path list generated contains the parent node from the end to the start.The list is
reversed to generate the path from the start node to the end node.

3.6 Collision Check

We used rectangles of different parameters to check for collision.

3.6.1. Geometry

Instead of storing each (x, y) coordinate for each vertex of the obstacle, we expressed
other coordinates in terms of one corner. For instance, if there is a rectangle with corner
(x,y), its adjacent vertex will be , ; the derivations for the rest𝑥 +  𝑤𝑐𝑜𝑠(θ)  𝑦 +  𝑤𝑠𝑖𝑛(θ)
are shown in the image. Note: to find the corner opposite to (x, y), construct the triangle

6



in yellow, , so . sin(∠ACB +∠C) and𝑡𝑎𝑛(∠𝐴𝐶𝐵) = 𝑤/ℎ ∠𝐴𝐶𝐵 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑤/ℎ) 𝑤2 + ℎ2 

cos(∠ACB +∠C) are the lengths of the yellow triangle.𝑤2 + ℎ2

3.6.2. Cases

The algorithm used for this simulation uses convex shapes, namely quadrilaterals;
however, this concept can be extended to n sided objects. To create the collision
checking program, each coordinate is assigned a vector. Since two sides of a rectangle
are parallel, only at most 4 lines need to be investigated(2 perpendicular lines on each
rectangle). Below are the 4 cases to be considered (note that all of them are
superimposed on a Cartesian coordinate system).

Note that the code uses lists to store robot arm links and objects. This process
systematically loops through all elements of the robot arm to check if there is any
collision. Loop through the link-list, and check if the link at the given index is within
another obstacle. This is accomplished by creating a ‘baseline’ that tilts the x plane to be
parallel to the side of the obstacle we are looking at. All the points of the object and link
are projected onto the ‘baseline’ via a dot product between each vertex and the ‘Baseline’
and the cases above are checked for.

Check for a gap between the two obstacles. There is at least one viewing angle where the
obstacles do not collide.

7



Non-collision scenarios

Collision of two 4-sided objects

Overlap Scenarios:

8



Note: Once the overlap conditions are satisfied, the program terminates, increasing
efficiency.

4. Experiments

Investigate the relationship between alpha and beta values on efficiency.

X axis indicates alpha values, Y axis indicates beta values and values on the spectrum
indicate the overall cost of moving to the required position. Graph on the left is the
robot-arm’s efficiency without any obstacles, and on the right, with a 0.2 by 0.2 square
obstacle in the plane. It can be noted that graph 1, regardless of alpha and beta values,
maintains a lower cost than in graph 2. In graph 2, at lower values of alpha and beta,
efficiency is the lowest.

5. Conclusion

This report outlined the processes behind the simulation of a 3-link planar robot arm, from the
mathematics to the algorithm. The  benefits and drawbacks of used constants and the influence
of obstacle positioning on the path taken were evaluated. The advantages of using angular
measurements rather than linear measurements for robot link positioning and obstacle
positioning were also investigated. Common to engineering, there was a trade off between
efficiency and cost with the alpha and beta values. It was then essential to find a specific
combination resulting in minimized cost and maximized efficiency. A further investigation into
this would entail the creation of a 3-D model to find the optimal location for alpha and beta
values. The results accrued from this investigation and higher n-link robot arms could contribute
to a novel algorithm to find optimal solutions for path planning.

9



6. References

[1]Analyzing a 3-joint planar robot arm. (n.d.). Robot Academy.
https://robotacademy.net.au/lesson/analyzing-a-3-joint-planar-robot-arm/

[2]Assignment 3 - Path Planning. (n.d.).
https://cs.brown.edu/courses/cs148/documents/asgn3_planning/btcohen/index.html

[3]Choset, H., & Kuffner, J. (n.d.). Robotic Motion Planning: RRT’s [Slide show]. Carnegie Melon
University. https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf

[4]Inverse kinematics using the Jacobian inverse, part 2. (2017, December 11).
https://nrsyed.com/2017/12/10/inverse-kinematics-using-the-jacobian-inverse-part-2/

[5]Jacobians. (n.d.). http://ltcconline.net/greenl/courses/202/multipleintegration/jacobians.html

[6]Robot control part 2: Jacobians, velocity, and force. (2017, March 18). Studywolf.
https://studywolf.wordpress.com/2013/09/02/robot-control-jacobians-velocity-and-force/

[7]Robotics Explained | Robot Course. (n.d.). https://robotics-explained.com/jacobian/

[8]Svegliato, J. (2021, December 13). How does a robot plan a path using RRT? - Towards Data
Science. Medium.
https://towardsdatascience.com/how-does-a-robot-plan-a-path-in-its-environment-b8e9519c738
b

[9]Velocity of 3-Joint Planar Robot Arm. (n.d.). Robot Academy.
https://robotacademy.net.au/lesson/velocity-of-3-joint-planar-robot-arm/

10


