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Abstract

Climate change poses a significant threat to humanity, affecting various sectors such as
energy, agriculture, transportation, and water sustainability. Concurrently, the rise of Artificial
Intelligence (Al) presents opportunities to enhance our understanding of climate change and
develop innovative solutions. This paper provides an in-depth analysis of Al's capabilities and
applications in combating climate change and argues that the costs incurred due to its usage
are outweighed by the benefits. It examines Al’'s substantial contributions to understanding and
combating climate change, including its ability to process vast amounts of data, recognize
patterns, and improve decision-making. In addition, it highlights Al's utility to key societal sectors
— such as energy, agriculture, transportation, and water management — highlighting its potential
to enhance efficiency, reduce environmental harm, and support informed decision-making.
Furthermore, the paper addresses counterarguments centering on the energy demands
associated with Al and presents possible solutions to mitigate these issues. By leveraging Al's
computational power and data processing abilities, society can engineer a more sustainable and
resilient future, making Al an essential tool in the fight against climate change.

l. Introduction

Climate change is one of the greatest existential threats confronting humanity today. With
rising carbon emissions from energy production, agricultural developments, transportation, and
water management, it has far reaching impacts across the economy, society, and the biosphere
at large. As governments and international organizations strive to address these pressing
challenges, a concurrent development has been the rise and integration of Artificial Intelligence
(Al) into society, which heralds both great promise and peril. Al technologies offer opportunities
to deepen our understanding of climate change, optimize resource management through
efficient calculations, and develop innovative solutions across various sectors. By harnessing
the power of Al in climate science, we can foster a sustainable future characterized by
resilience, efficiency, and informed decision-making (Cowls et al. 2021).

The potential contributions of Al notwithstanding, the computational demands of training
these models, particularly large-scale deep learning models, require significant energy
consumption, often sourced from fossil fuels (Kirkpatrick et al. 2023). This energy-intensive
process contributes to greenhouse gas emissions and could potentially offset the environmental
benefits gained from Al applications in other sectors. However, efforts are underway to develop
more energy-efficient Al algorithms, utilize renewable energy sources for computing
infrastructure, and implement sustainable practices in Al development and deployment (Wu et
al. 2023). Addressing these challenges is crucial to maximizing the net positive impact of Al on
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climate action, ensuring that the technology aligns with global sustainability goals while
advancing innovation and resilience across diverse industries.

Despite these considerations, we argue that there are solutions that can resolve or
mitigate the problems. Addressing global climate change requires the abilities of Al to process
and analyze vast amounts of data. Therefore, the urgency of the crisis outweighs the
drawbacks, necessitating the development of Al to combat growing issues of climate change.

In this paper, we first provide an overview of the computational capabilities of Al. We
analyze how Al can be applied specifically to address climate change, not only by advancing
basic scientific understanding, but also by discovering practical solutions to combat it. Second,
we highlight four key sectors in which Al has the potential for widespread application: energy,
agriculture, transportation, and water usage (Herweijer et al. 2023). Third, we consider
counterarguments to the application of Al, focusing mainly on the energy demands of training
more powerful and sophisticated models, as well as rebuttals to those counterarguments.

Il. Capabilities of Al Models

Al has rapidly evolved into a formidable tool, particularly in recent years, owing to its
unparalleled data processing capabilities (Chen et al. 2023). Al excels in handling and analyzing
large, diverse datasets with far greater efficiency and accuracy than human analysts (Rasp et al.
2020). This capability is pivotal in processing non-structured, multi-dimensional data prevalent in
climate science, facilitating insights into complex climate datasets and enhancing predictive
modeling for future trends. By employing sophisticated optimization techniques, Al can discern
intricate patterns and anomalies that human analysts might overlook. In climate science in
particular, Al can analyze historical climate data, satellite imagery, and sensor data to identify
correlations and trends that contribute to more accurate weather forecasting and climate change
projections (Sahil et al. 2023). By recognizing these intricate patterns, Al not only enhances
scientific understanding but also supports decision-making processes in fights against climate
change. As Al continues to evolve and its algorithms become more sophisticated, its role in
addressing complex global challenges like climate change becomes increasingly pivotal,
offering innovative solutions and actionable insights that contribute to a more sustainable and
resilient future.

Training Al models is a computationally intensive process designed to harness the
potential of large datasets effectively. It begins with data collection, where relevant information is
gathered to form the foundation for the model's learning (Liu et al. 2024). Once collected, the
data undergoes rigorous preprocessing to ensure its quality and suitability for analysis (Liu et al.
2024). This involves tasks such as handling missing values, standardizing data distributions to
facilitate comparison across variables, and dividing the dataset into distinct subsets for training
and testing purposes. The training set is used to teach the model by exposing it to patterns and
relationships within the data. During the training phase, various types of models—such as linear
regression, neural networks, or decision trees—are employed, each suited to different types of
data and tasks. These models iteratively process the training data, making predictions based on
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initial parameters and adjusting these parameters in response to errors identified during
prediction. This iterative adjustment continues until the model achieves an acceptable level of
accuracy and performance on making predictions for the training data. To assess the model's
effectiveness and ensure its ability to generalize to new, unseen data, a test set is held out from
the training data. The model’s performance is then evaluated on this test test by using metrics
such as accuracy (the proportion of correctly predicted instances), precision (the proportion of
true positives among predicted positives), recall (the proportion of true positives identified
correctly), and F1-score (a harmonic mean of precision and recall) (Talaei Khoei et al. 2023).
These metrics provide a quantitative measure of the model's predictive capabilities and guide
further refinements. Furthermore, to optimize the model's performance and ensure robustness,
techniques like cross-validation are utilized. Cross-validation is a more comprehensive
framework for training and testing, and involves partitioning the data into multiple subsets,
training the model on different combinations of these subsets, and evaluating its performance
across each subset. This process helps in identifying potential overfitting (where the model
performs well on training data but poorly on new data) and allows for adjustments to
hyperparameters—variables that control the learning process—and the model's architecture.

With extensive training and development, Al can become a powerful tool due to its ability
to process and analyze vast amounts of data, recognize complex patterns, and improve over
time. The computational ability of Al increases with more data and increased number of model
parameters, enabling models to tackle increasingly complex problems across various domains
With the vast amounts of data that data gathering technologies offer,Al can be used to combat
climate change

lll. Applications of Al to Combating Climate Change
A. Modeling and Prediction

Artificial Intelligence (Al) has become a pivotal tool in the battle against climate change,
greatly improving our capacity to forecast and understand environmental changes. By analyzing
large datasets, Al systems can spot complex patterns and trends, offering detailed predictions
about future weather conditions with high accuracy (Cowils et al. 2021). This enables
researchers to anticipate the effects of climate change - such as increased sea level or severe
weather events. Through the examination of satellite images, temperature records, and other
environmental data, Al can forecast impacts and evaluate potential dangers of climate change
with a high degree of certainty (Sahil et al. 2023). One example would be the use of Al to track
rising sea levels. Al can help identify regions at risk of flooding, allowing for the development of
effective mitigation and adaptation strategies. This is particularly important for coastal cities,
which can use Al predictions to design seawalls and other protective infrastructure. Other
examples include using Al-driven simulations to analyze how increasing greenhouse gas
emissions affect global temperatures and how deforestation influences regional weather
patterns.
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Moreover, Al-powered models can simulate the results of different policy actions,
assisting policymakers in choosing measures that enhance environmental and economic
outcomes while reducing the risk of adverse effects. The forecasting and modeling capabilities
of Al not only increases our comprehension of the Earth's intricate climate systems but also
empower organizations to make proactive, well-informed decisions to avert disasters and
grapple with the long-term consequences of climate change (Sahil et al. 2023; Huntingford et al.
2019). By facilitating the application of Al to issue early warnings and prompt responses to
climate-related dangers, Al can enable officials to safeguard at-risk communities and
ecosystems (Sahil et al. 2023).

One notable case study is the application of Al to predict El Nifio-Southern Oscillation
(ENSO), which is a large-scale, recurring atmospheric shift marked by the warming of ocean
waters in the central and eastern regions of the equatorial Pacific Ocean (River Tello et al. 2023;
Chapman et al. 2021). This event significantly impacts global weather patterns and has
wide-ranging environmental implications. It results in increased rainfall and flooding in the
United States and Peru, while also causing severe droughts in areas such as Australia and
Indonesia. Al has emerged as a critical tool in comprehending and managing El Nifio, as its
precise forecasting and effective strategies can successfully address El Nifio events. Al boosts
the precision of El Nifio forecasts by analyzing vast climate data, including sea surface
temperatures, air pressure readings, and historical weather conditions (Wong 2024). Compared
to traditional statistical approaches, Al algorithms — specifically, deep neural networks — have
demonstrated greater accuracy in predicting El Nifio events several months in advance. Work
by Chapman et al. (2021) has revealed that Al-driven models could predict El Nifio events up to
18 months before they occur, providing more time for preparation and mitigation actions.

Moreover, Al supports ongoing surveillance and real-time analysis of El Nifio activities
(Chapman et al. 2021; Glantz and Ramirez 2020). By combining data from satellites with Al
methodologies, the most recent information on sea surface temperatures and weather patterns
can be determined, enabling adjustments to forecasts and strategies for response (Sahil et al.
2023; Cowls et al. 2021). This real-time monitoring and analysis is essential for dealing with the
immediate effects of El Nifio, like predicting and reacting to severe weather conditions such as
hurricanes and typhoons, which are often affected by El Nifio conditions. As climate change
continues to alter the frequency and strength of El Nifio events, the importance of Al in
forecasting and readiness grows. Al deepens our comprehension of El Nifio and its worldwide
impacts and offers ways to actively protect ecosystems, economies, and communities around
the globe (Sahil et al. 2023).

B. Energy
One of the biggest challenges of modern society is finding affordable, reliable energy
sources that are accessible to all, while minimizing the negative impact on the Earth from
greenhouse gas emissions and air pollution that is the byproduct of many energy extraction
methods (Herweijer et al. 2023). Fossil fuels continue to generate an increasingly large amount
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of greenhouse gas that harms the planet. However, the application of Al to the energy sector
has the potential to increase efficiency and reduce environmental harm, leading to a cleaner and
less fossil fuel-dependent society.

There are several ways in which Al can be applied in the energy sector. First, Al enables
smart monitoring and management of energy consumption, facilitating optimal allocation of
energy resources and minimizing waste (Herweijer et al. 2023; Ahmad et al. 2021). This allows
for the integration of more renewable sources of energy such as wind or solar, and can reduce
reliance on fossil fuel-based energy sources. Smart monitoring has the potential to optimize
electricity consumption not just in key sectors but also in households. Lower energy costs can
expand business output and increase consumer demand, ultimately boosting economic activity.
Similarly, decentralized energy networks can significantly improve the electricity transmission
and distribution process, resulting in higher productivity for the sector by enabling faster uptake
of renewables (Herweijer et al. 2023).

Second, Al enhances the prediction of energy supply and demand as it is used to better
forecast an area’s short- and long-term energy needs, including predicting weather conditions to
manage fluctuations. These accurate predictions allow for a better alignment of energy
production with the real demand and can detect early infrastructure faults (Herweijer et al. 2023;
Gaur et al. 2023). The prevention of infrastructure failures helps minimize the environmental
impact of energy production. For example, oil or gas leaks can be avoided through Al
predictions that can significantly reduce greenhouse gas emissions throughout the year. In
terms of energy production demand, better prediction of energy use allows for higher
optimization of power plants. It reduces the frequency of fluctuations in operation, resulting in
greater efficiency and less emissions. For instance, hyperlocal weather modeling is used to
monitor and adjust the positioning of solar panels and wind turbines to maximize power
generation.

Third, Al algorithms can improve the coordination of decentralized energy networks,
reducing energy waste. Localized coordination reduces transmission losses, as energy is
generated and consumed closer to where needed, further minimizing environmental impacts.

In conclusion, Al plays a key role in the energy sector as it optimizes energy use,
integrates renewable sources, enhances predictive maintenance, and improves overall
operational efficiency, which all work together to significantly reduce environmental impacts
(Herweijer et al. 2023). Furthermore, greater use of renewables, enabled by localized grids and
Al technologies that improve the effectiveness of renewable assets, reduces fossil fuels’ share
in energy production and shifts the energy mix towards less carbon intensive energy sources
(Gaur et al. 2023; Herweijer et al. 2023). In fact, Al's applications in the energy sector are
expected to be a key driver behind substantial projected greenhouse gas emissions, amounting
to a 1.6%-2.2% reduction from the baseline in 2030. However, despite the notable benefits of
the applications of Al, it is important to note that these projections do not solely rely on Al, but
also on the adoption of a wider complementary technology infrastructure. For instance, satellite
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imagery and sensory data must be used in tandem with Al to gather the data necessary to make
crucial decisions and predictions (Sahil et al. 2023).

C. Agriculture

The UN’s Food and Agriculture Organization (FAO) predicts that food production must
double by 2050 in order to prevent mass food shortages due to the Earth’s increasing
population (Herweijer et al. 2023). Al has played a key part of the technological innovations that
are transforming agricultural production by responding to growing demand in a way that limits
social and ecological trade-offs. As a result, in the agricultural sector, the use of Al has the
potential to reduce global emissions by up to 0.1% — 0.3% in 2030 (Herweijer et al. 2023).

The integration of Al into agriculture has resulted in improved efficiency, productivity, and
sustainability. One example of this type of improvement is the use of agricultural robots, which
include Al robots that are programmed to carry out agricultural tasks autonomously with optimal
timing (Herweijer et al. 2023), such as only picking fruit when it is determined to be ripe. These
robots can also augment human labor, making it easier to maintain large farms while also
optimizing production by minimizing human error. Additionally, Al enhances the monitoring of
crop, soil, and livestock health. Sensor and imaging deals with monitoring the conditions of
agriculture, which can inform the farmer of better management of crop habitat (Zhang and Qiao
2024). For example, monitoring and identification of pests in real time to inform use of
pesticides, including volume needed, specific locations on a farm that pesticides are needed etc.
The application of Al in agriculture through robotics, environmental monitoring, land planning,
and health monitoring of crops leads to more sustainable farming practices. The overall benefit
is a healthier farming environment that can serve as a more sustainable one as well. The use of
Al in agricultural practices positively contributes to climate change as there is less harm to the
environment in which farming practices normally cause. Another important Al application is
precision monitoring of environmental conditions for agriculture and forestry. Field sensors are
used to measure the levels of environmental factors such as temperature, humidity, soil
moisture, etc. These measurements are useful because farmers can use the information to
improve their crop yields. However, to obtain maximum crop yields, Al can be applied to make
real-time, autonomous adjustments. For example, if sensors detect a potential drought, Al could
automatically adjust the irrigation schedule to conserve water and maintain crop health (Zhang
and Qiao 2024). In addition, Al also plays a crucial role in land-use planning and management.
Al helps farmers and land managers make informed decisions about crop rotation, planting
schedules, and resource allocation (Herweijer et al. 2023). This is possible through data
gathering by mapping agricultural and forestry activities over time.

In the reduction of greenhouse gas emissions, Al-guided robotics is key as it reduces
fossil fuel usage in agricultural activities. Al tools for land-use planning are also very important in
reducing emissions as they optimize the use of, and help protect natural resources such as
forests. Besides emissions, these applications minimize the negative environmental effects
associated with the overuse of inputs such as water and chemicals.
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Achieving these gains, however, requires the right infrastructure and complementary
technologies for Al to flourish. Similar to the energy sector, agriculture requires sensors
connected to Al to continually collect masses of information such as temperature, moisture, soil
conditions, etc. (Zhang and Qiao 2024). The infrastructure for transmitting and processing this
data will also need to develop in parallel, given many rural agricultural areas still face limited
digital connectivity.

D. Transportation

Transportation accounts for up to 30% of total global energy consumption and
carbon emissions (Herweijer et al. 2023). Achieving a sustainable and efficient way to move
people and cargo remains one of the biggest challenges in an increasingly urbanized and
globalized world. Al can help facilitate improvements to transportation by optimizing traffic flow,
reducing fuel consumption, and enhancing the efficiency of public transportation networks. The
key applications in this sector are autonomous vehicles, traffic optimization of connected
vehicles, and predictive maintenance for vehicles. The impact of the applications of Al in
transportation is estimated to lead to a 0.3%-1.7% reduction in greenhouse gas emissions by
the year 2030 (Herweijer et al. 2023).

Regarding the use of autonomous vehicles, Al enables autonomous or
semi-autonomous transport, offering eco-driving features, vehicle platooning, and vehicle
sharing services (Herweijer et al. 2023). These features all contribute to reduced fuel
consumption and lower emissions. Autonomous vehicles can also maintain optimal speeds,
follow the most efficient routes, and minimize human error, which are factors that reduce fuel
consumption. Another application of Al in transport is the optimization of traffic flow (lyer 2021;
Herweijer et al. 2023). Al can monitor and control traffic flows in real-time, reduce queuing, and
enforce real-time smart pricing for vehicle tolls. Examples of the latter include variable rate
congestion charges depending on time of day, level of congestion, number of passengers, and
efficiency of vehicles. Predictive maintenance for vehicles is another area where Al and internet
of things (loT) technologies make a substantial impact (Herweijer et al. 2023). Al helps prevent
unexpected breakdowns and prolongs the life of vehicles by continually monitoring vehicle
components and predicting the need for maintenance. This saves costs and reduces downtime
for people and also minimizes the environmental impact of the production and disposal of
vehicles. Al’s ability to regulate and suggest well-timed maintenance ensures that vehicles
operate at peak efficiency, resulting in the reduction of fuel consumption and thus emissions
(lyer 2023).

Despite the substantial benefits of autonomous vehicles, increasing their usage remains
uncertain as it is strongly dependent upon the behavior of the users and the actions of
policymakers. For their full potential to show, they would most likely have to be electric.
Furthermore, in an ideal world, they would have to be used for ridesharing and mobility on
demand, potentially reducing overall vehicle miles. There are also immediate benefits from AVs
such as eco-driving, smart navigation, and reduced congestion.
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E. Water

As pollution, rapid urbanization and climate change affect the global water cycle, it is
forecast that global demand for freshwater will exceed supply — falling 40% short of the quantity
required to support the global economy by 2030 (Herweijer et al. 2023). The application of Al in
water resource management and monitoring can help solve the global water crisis by improving
efficiency and minimizing wastage.

Al offers several solutions that can enhance water management in several key
applications. First, Al systems provide real-time monitoring to predict faults in water systems
and identify management activities that optimize water systems (Herweijer et al. 2023). This
proactive approach ensures optimized water systems and reduces the risk of infrastructure
failures, thereby maintaining consistent clean water supply. Second, by analyzing data from
sensors embedded in the infrastructure, Al can detect anomalies and forecast issues before
they escalate, reducing downtime and repair costs, which thereby increases operational
efficiencies. Al also plays a vital role in monitoring and predicting the demand of water.
Advanced Al monitoring tools can be used in both industrial and household levels. They allow
suppliers to pre-empt water demand, reducing both wastage and shortages.

Additionally, Al optimizes the monitoring and treatment of wastewater. Al systems can
model water treatment and desalination processes, allowing for the efficient reuse of greywater.
By optimizing operating conditions, Al can enhance the performance of water treatment
facilities, ensuring that treated water meets quality standards while minimizing energy and
chemical usage. Moreover, Al can predict the impact of various factors on wastewater treatment
processes, enabling operators to make informed decisions and improve overall efficiency.

IV. Negative Effects of Al in Climate Change
A. Quantifying Al’s Carbon Footprint

The rapid advancement of artificial intelligence (Al) technologies has brought significant
benefits across various sectors, from energy to agriculture. However, the increasing
computational power required for training and deploying complex Al models has raised
concerns about the environmental impact, particularly in terms of Al's carbon footprint. A
“carbon footprint” accounts for the greenhouse gas (GHG) emissions of a device or activity,
expressed as carbon dioxide equivalent (Cowls et al. 2021). This section explores the
methodologies for assessing Al's carbon footprint, which includes life cycle assessments,
energy consumptions measurement, and carbon intensity metrics.

Life Cycle Assessment (LCA) is a comprehensive method that evaluates the
environmental impact of Al systems from start to finish. This approach encompasses all stages
of the Al lifecycle including resource extraction, manufacturing, and usage (Cowls et al. 2021).
First, resource extraction starts with the assessing of emissions from extracting raw materials
used in manufacturing Al hardware, such as graphical processing units (GPUs) and central
processing units (CPUs). The extraction and processing of raw materials for Al hardware are
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energy-intensive processes. For instance, producing high-purity silicon, a key ingredient in
modern computer chips, requires significant amounts of electricity, often sourced from
non-renewable energy grids, leading to substantial GHG emissions (Haque et al. 2014).
Second, manufacturing Al hardware also contributes to the overall carbon footprint. This phase
involves the fabrication of components such as GPUs, CPUs, data storage devices, and other
specialized hardware used in data centers and Al applications (Cowls et al. 2021). In particular,
the production of semiconductor devices, such as GPUs and CPUs, is highly energy intensive.

Another important factor in determining carbon footprint is measuring the energy
consumption of the mode, which includes training and running the model. The training and
usage of Al itself involves substantial energy consumption and GHG emissions due to the
computational demands of Al workloads (Wu et al. 2022). Training Al models is an
energy-intensive process that involves running large-scale computations to optimize the model's
parameters. Specific tools and frameworks have been developed to estimate the energy
consumption and resulting carbon emissions of Al models. These tools consider factors such as
electricity usage, geographic location, and the carbon intensity of the local energy grid (Gaur et
al. 2023). The first tool is a machine learning emissions calculator. This tool estimates the
energy consumption and carbon emissions of training Al models by taking into account the
hardware used, the duration of training, and the location of data centers. It helps researchers
and engineers understand the environmental impact of their models and explore ways to reduce
it. The second tool is an open-source program called CodeCarbon that can track the energy
consumption of code execution and estimate the corresponding CO, emissions. It integrates
with popular machine learning frameworks and provides real-time feedback on the carbon
footprint of different computational tasks (https://codecarbon.io/). The tool also estimates the
CO, emissions associated with energy consumption by considering factors such as the
geographic location of the data center and the carbon intensity of the local energy grid. By
combining these factors, CodeCarbon provides an accurate estimate of the carbon footprint of
running specific code segments.

Carbon intensity metrics provide a standardized way to measure and compare the
emissions associated with computational tasks. A key metric in this context is "CO,e per FLOP"
(carbon dioxide equivalent per floating point operation), which quantifies the carbon emissions
produced per unit of computational work. These metrics play a crucial role in understanding and
mitigating the environmental impact of Al models, enabling the comparison ofAl model
efficiencies as well as the optimization of computational processes (Lacoste et al. 2019). This
comparison is vital for selecting Al models that deliver high performance with minimal
environmental footprint. For instance, studies have shown that large language models, such as
GPT-3, have significant carbon footprints due to their extensive training requirements. By
comparing these models with more efficient counterparts, researchers can identify greener
alternatives that still meet performance criteria. A study by Strubell et al. (2019) highlighted the
carbon emissions of various natural language processing (NLP) models, showcasing the
importance of such metrics in model selection (Strubell et al. 2019). Furthermore, understanding
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the carbon intensity of computational tasks allows researchers to optimize hardware usage. For
example, GPUs and TPUs, while powerful, have different energy consumption profiles. By
selecting the most efficient hardware for specific tasks, emissions can be significantly reduced
(Lacoste 2019). Factors driving carbon footprint

As the application of Al continues to proliferate across various sectors, its energy
consumption and environmental impact have become subjects of significant concern. The total
GHG emission produced throughout the lifecycle of Al systems from extraction of raw materials,
manufacturing, transportation, and lifetime usage encompasses Al’s carbon footprint (Cowls et
al. 2021). This section explores multiple factors of Al's carbon footprint including the use of data
centers and energy, training iterations and intensity, and model complexity and size (Cowls et al.
2021; Kirkpatrick 2023).

First, the energy consumption of data centers is a major contributor to the carbon
footprint of Al. This energy is primarily used for two purposes: powering the IT equipment
(servers, storage, and networking) and maintaining an optimal operating environment,
particularly through cooling systems (Taddeo et al. 2021; Cowls et al. 2021). As Al models,
especially deep learning models, require vast computational resources, the demand for energy
in data centers increases significantly. Cooling systems are essential to prevent overheating and
to ensure the reliability and performance of IT equipment. Traditional cooling methods, such as
air conditioning, can be highly energy-intensive and thus inefficient. Recently, innovations in
cooling technologies, including liquid cooling and advanced airflow management, aim to improve
energy efficiency and optimized cooling. These systems contribute greatly to reducing [?] the
overall energy consumption and carbon footprint of data centers and thus of Al systems.
Furthermore, the sources of the energy that the data centers use have significant impact
(Taddeo et al. 2021), including where and how electricity is sourced, stored and delivered.
Models that are trained in regions where the energy used largely rely on fossil fuels are far more
polluting and will have much larger carbon footprints than models with energy generated from
renewable sources such as wind, solar, or hydropower (Kirkpatrick 2023).

Second, Al systems, particularly those utilizing deep learning and large-scale neural
networks, require substantial computational resources to train (Kirkpatrick 2023). This
requirement is particularly pronounced in models like GPT-3, which consists of 175 billion
parameters and underwent over 157 test and training runs during its development. Each of
these training runs consumed a significant amount of energy, leading to considerable carbon
emissions (Taddeo et al. 2021). Training Al models is notably energy-intensive because it
involves repeatedly processing large datasets to adjust the weights and biases of the neural
networks. This process requires high-performance hardware such as GPUs and TPUs, which
are energy hungry. The electricity used for training these models is often sourced from fossil
fuels, leading to substantial carbon emissions contributing to the carbon footprint of Al (Taddeo
et al. 2021; Ahmad et al. 2021). To put this into perspective, training GPT-3 produced
approximately 223,390 kg of CO, emissions per run. This emphasizes the need for more

10
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energy-efficient training methods and a greater reliance on renewable energy sources to
mitigate the environmental impact of Al development (Andonie 2019).

Third, while using faster or more efficient hardware can reduce the training time for Al
models, the overall size and complexity of the model being trained has the most significant
impact on carbon emissions. Larger models inherently consume more electricity than smaller
models due to their increased complexity and the extended computer training time required
(Kirkpatrick 2023). The evolution of OpenAl's GPT models illustrates this trend. GPT-1, released
in June 2018, contained approximately 0.12 billion parameters. By February 2019, that number
increased to about 1.5 billion parameters, and by May 2020, exponentially grew to 175 billion
parameters. Each successive model demanded greater computational resources, leading to
higher energy consumption and greater carbon emissions. A study by Strubell et al. (2019)
highlights the environmental implications of training large-scale Al models. They found that
training a single transformer model can emit as much CO, as five cars over their entire lifetimes.
This is particularly concerning given the trend towards developing increasingly larger and more
complex models to push the boundaries of Al capabilities (Strubell et al. 2019). Moreover, the
study by Patterson et al. (2021) echoes these findings, emphasizing that the growth in model
size has outpaced improvements in hardware efficiency, leading to higher overall energy
consumption and emissions (Patterson et al. 2021).

B. Reducing Carbon Footprint of Al

Reducing the carbon footprint of artificial intelligence (Al) is crucial for ensuring the
sustainability of technological advancements. This effort can be approached through several key
strategies, including algorithmic optimization, the adoption of energy-efficient hardware, and the
utilization of renewable energy sources.

Algorithmic optimization in Al focuses on refining both the training and inference
processes to reduce energy consumption. One key technique is model pruning, which involves
eliminating redundant or less significant parameters from the neural network. This not only
reduces the model's size but also decreases the computational load, leading to faster and more
efficient training and inference without significant loss in performance (Cheng et al. 2023). One
common approach to pruning is weight pruning, where individual connections between neurons
are assessed for their contribution to the model's output. Weights with small magnitudes, which
contribute less to the decision-making process of the network, are pruned away. This method
can significantly reduce the number of parameters, leading to smaller model sizes and faster
inference times and thus less carbon emissions. Quantization is another effective technique
used in machine learning to reduce the computational and memory footprint of neural networks
(Jacob et al. 2017). The primary goal of quantization is to make models more suitable for
deployment on resource-constrained devices, such as mobile phones and edge computing
platforms, without substantially degrading their performance. It involves converting
high-precision floating-point numbers, typically 32-bit, into lower-precision numbers, such as
16-bit or 8-bit integers. This reduction in precision decreases the amount of memory required to
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store the model and the computational power needed to perform arithmetic operations, leading
to significant improvements in efficiency and energy consumption. Another method for
diminishing energy usage is knowledge distillation,a process where a large, complex model (the
teacher) trains a smaller model (the student) to replicate its performance (Hinton et al. 2015).
The student model, being less complex, requires less computational power, making it more
energy-efficient. These optimization techniques not only improve the efficiency of Al models but
also contribute to reducing the overall carbon footprint associated with their development and
deployment.

Energy-efficient hardware is a pivotal component in reducing the power required for Al
computations. Specialized Al accelerators, such as Google's Tensor Processing Units (TPUs)
and advanced Graphics Processing Units (GPUs) from companies like NVIDIA, are designed to
optimize the performance of Al workloads while minimizing energy consumption (Kirkpatrick
2023). TPUs, for instance, are tailored for high-throughput machine learning tasks and can
perform operations more efficiently than traditional CPUs or even general-purpose GPUs. The
integration of tensor cores in NVIDIA's Volta and subsequent architectures exemplifies this
trend, as these cores are specifically designed to accelerate deep learning workloads by
performing matrix multiplications more efficiently (Andonie 2019). These units are engineered to
handle the vast amounts of data involved in Al training and inference with lower power
consumption and higher speed. Advanced GPUs have also seen significant improvements in
terms of energy efficiency. Modern GPUs incorporate features such as lower precision
arithmetic, which allows for faster computations with reduced power usage. Additionally, these
GPUs support mixed-precision training, which combines high precision with lower precision
calculations to balance accuracy and efficiency. The deployment of such specialized and
advanced hardware significantly decreases the energy required for Al computations.

Transitioning to renewable energy sources to power data centers is a critical strategy for
reducing the carbon emissions associated with Al operations. Data centers, which house the
vast computational infrastructure required for training and deploying Al models, consume
significant amounts of electricity. By sourcing this power from renewable energy sources such
as wind, solar, and hydroelectric power, the Al industry can substantially mitigate its
environmental impact (Ahmad et al. 2021). For example, tech giants like Google and Microsoft
have made significant strides in this area by committing to 100% renewable energy for their data
centers, thereby demonstrating the feasibility and benefits of such initiatives.

The integration of renewable energy into data center operations involves multiple
strategies. On-site renewable energy generation, such as installing solar panels or wind
turbines, allows data centers to directly harness clean energy (Cowils et al. 2021; Herweijer et al.
2023; Ahmad et al. 2021). Furthermore, innovations in energy storage and grid management
play a crucial role in ensuring the reliability and efficiency of renewable energy sources.
Advanced battery technologies and smart grid solutions enable data centers to store excess
renewable energy and use it during peak demand times, enhancing the stability and
sustainability of their operations. By leveraging these technologies, data centers can achieve a
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more consistent and resilient power supply while minimizing reliance on fossil fuels (Google
Sustainability; Kirkpatrick 2023).

Compression, a technique that reduces the bit width of each parameter included in the
model, plays a pivotal role in minimizing the carbon footprint of Al systems by reducing the
computational and storage requirements of models and data (Kirkpatrick 2023). By effectively
compressing neural networks through methods like quantization, pruning, and distillation, the
size and complexity of models can be significantly reduced without sacrificing performance. This
reduction in model size leads to lower energy consumption during both training and inference
phases, thereby decreasing the overall carbon emissions associated with running Al
applications. Additionally, compressed models require less data transmission and storage,
further contributing to environmental sustainability by minimizing the energy-intensive processes
involved in data handling and retrieval. As Al continues to integrate into various sectors, the
adoption of compression techniques emerges as a critical strategy to mitigate its environmental
impact and promote eco-friendly practices in computing.

V. Rebuttals

While the carbon footprint of Al is a significant concern, it is important to consider the
substantial benefits Al brings to the fight against climate change. Al's potential to drive
efficiency, innovation, and sustainability across various sectors can offset its environmental
impact. By leveraging Al technologies, we can enhance our ability to model and predict
environmental changes, optimize energy use, advance sustainable agricultural practices, and
manage water resources more efficiently. Despite some concerns regarding the negative
impacts of Al, such as energy consumption and potential job displacement, the benefits of Al in
combating climate change significantly outweigh these drawbacks.

One criticism of the use of Al models is that they require significant computational power,
which can lead to increased energy consumption and a larger carbon footprint. While this is a
valid concern, it is important to consider the net positive impact. The insights gained from Al
models can lead to more efficient energy use, better disaster preparedness, and overall reduced
emissions, ultimately outweighing the initial energy costs associated with running these models
(Sahil et al. 2023; Huntingford et al. 2019). Indeed, one of the primary advantages of Al in the
context of climate change is its unparalleled ability to model and predict environmental changes
with high accuracy. Al systems can analyze vast datasets, identifying complex patterns and
trends that traditional methods might overlook. This capability enables researchers to anticipate
the effects of climate change, such as rising sea levels and severe weather events, and to
develop effective mitigation and adaptation strategies (Cowls et al. 2021).

The energy sector is one of the largest contributors to global GHG emissions. Some
critics contend that the Al infrastructure itself—comprising servers, data centers, and
computational resources—consumes substantial energy, potentially offsetting the environmental
benefits gained from Al applications in the energy sector. However, the overall impact of Al is a
net reduction in emissions. The energy consumed by Al infrastructure is continually decreasing
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due to advancements in energy-efficient hardware and cooling technologies (Lacoste et al.
2019). Moreover, the improvements in energy distribution and the increased integration of
renewables facilitated by Al far exceed the energy costs associated with Al infrastructure.Al has
the potential to revolutionize this sector by optimizing energy consumption, integrating
renewable energy sources, and enhancing predictive maintenance (Herweijer et al. 2023).
Smart monitoring systems powered by Al can facilitate the optimal allocation of energy
resources, minimizing waste and reducing reliance on fossil fuels. Al also enhances the
prediction of energy supply and demand, allowing for better alignment of energy production with
real demand and early detection of infrastructure faults (Gaur et al. 2023). Furthermore, the shift
towards more renewable sources that is being driven in part by Al significantly reduces the
carbon footprint of the energy sector (Kirkpatrick 2023; Andonie 2019).

The integration of Al into agriculture has resulted in improved efficiency, productivity, and
sustainability. Critics may point out that the production and maintenance of Al-powered
agricultural machinery can contribute to the carbon footprint. However, the overall reduction in
emissions from optimized agricultural practices and reduced resource wastage outweighs the
emissions associated with Al technology (Herweijer et al. 2023). Furthermore, as Al technology
advances, efforts are being made to develop more energy-efficient and environmentally friendly
Al systems. Al-driven agricultural robots can perform tasks with optimal timing, such as picking
fruit only when it is ripe, thereby reducing waste (Herweijer et al. 2023). Al also enhances the
monitoring of crop, soil, and livestock health, allowing for more precise use of inputs like water
and fertilizers. This leads to more sustainable farming practices and a reduction in the
environmental impact of agriculture.

Al offers several solutions that can enhance water management, including real-time
monitoring to predict faults in water systems and optimizing water treatment processes
(Herweijer et al. 2023). Concerns may arise about the dependence on Al systems for critical
water management functions, potentially leading to vulnerabilities in case of system failures.
However, Al can be integrated with existing systems to provide an additional layer of monitoring
and control, rather than replacing them entirely. This redundancy enhances the overall reliability
and efficiency of water management. Despite the huge increases in Al's carbon footprint with
rising model complexities and sizes, methods are being implemented in order to reduce the
carbon footprint and make Al more sustainable in its use to fight climate change. While some
researchers and policy makers still point out concerns associated with the implementation of Al,
the long-term advantages of reduced emissions, increased efficiency, and better-informed
decision-making make a compelling case for its widespread adoption. Conclusion/closing
statement

The benefits that Al offers are invaluable. Al's unmatched ability to process and analyze
vast amounts of data quickly and accurately is crucial for understanding complex climate
patterns, predicting future scenarios, and crafting effective mitigation and adaptation strategies
(Sahil et al. 2023; Herweijer et al. 2023; Ahmad et al. 2021; Cowls et al. 2021). It enhances the
accuracy and efficiency of climate models by identifying subtle patterns and correlations that
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traditional methods might miss, leading to more reliable predictions and better-informed policy
decisions. Furthermore, Al optimizes energy consumption across various sectors. In agriculture,
transportation, and water, Al drives sustainable practices, such as precision agriculture and
transportational optimization, leading to increased efficiency and reduced environmental impact.

Despite these benefits, Al development comes with its own carbon footprint, primarily due
to the energy-intensive nature of training and running Al models (Kirkpatrick 2023; Strubell et al
2019). However, this impact can be mitigated through more efficient algorithms, the use of
renewable energy sources for data centers, and the production of efficient hardware (Lacoste et
al. 2019). In addition, the potential net benefits to the different sectors are greater than their
respective costs.

The urgency of addressing climate change, underscored by the increasing frequency and
severity of climate-related disasters, makes the strategic use of Al essential. While there are
risks and costs associated with Al, its potential to enhance climate modeling, optimize energy
use, and promote sustainable practices outweigh these drawbacks. By implementing efficient
practices and fostering collaboration, we can mitigate the associated risks and leverage Al's
capabilities to make substantial progress in combating climate change. The immediacy of the
climate crisis demands innovative solutions, and Al stands out as a critical tool in our efforts to
protect the planet for future generations.

15



Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Works Cited

Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial
intelligence in sustainable energy industry: Status Quo, challenges and opportunities.
Journal of Cleaner Production, 289, 125834.
https://doi.org/10.1016/j.jclepro.2021.125834

Andonie, R. (2019). Hyperparameter optimization in learning systems. Journal of Membrane
Computing, 1(4), 279-291._https://doi.org/10.1007/s41965-019-00023-0

Chapman, R., Cock, J., Samson, M., Janetski, N., Janetski, K., Gusyana, D., Dutta, S., &
Oberthar, T. (2021). Crop response to El Nifio-Southern Oscillation related weather
variation to help farmers manage their crops. Scientific Reports, 11(1), 8292.
https://doi.org/10.1038/s41598-021-87520-4

Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A. |., Farghali, M., Hua, J., Al-Fatesh, A., lhara,
l., Rooney, D. W., & Yap, P.-S. (2023). Artificial intelligence-based solutions for climate
change: A review. Environmental Chemistry Letters, 21(5), 2525-2557.
https://doi.org/10.1007/s10311-023-01617-y

Chen, L., Han, B., Wang, X., Zhao, J., Yang, W., & Yang, Z. (2023). Machine Learning Methods
in Weather and Climate Applications: A Survey. Applied Sciences, 13(21), 12019.
https://doi.org/10.3390/app132112019

Cheng, H., Zhang, M., & Shi, J. Q. (2023). A Survey on Deep Neural Network
Pruning-Taxonomy, Comparison, Analysis, and Recommendations (arXiv:2308.06767).
arXiv._http://arxiv.org/abs/2308.06767

Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2021). The Al Gambit — Leveraging
Artificial Intelligence to Combat Climate Change: Opportunities, Challenges, and
Recommendations. SSRN Electronic Journal._https://doi.org/10.2139/ssrn.3804983

Gaur, L., Afaq, A., Arora, G. K., & Khan, N. (2023). Artificial intelligence for carbon emissions
using system of systems theory. Ecological Informatics, 76, 102165.
https://doi.org/10.1016/j.ecoinf.2023.102165

Glantz, M. H., & Ramirez, |. J. (2020). Reviewing the Oceanic Nifio Index (ONI) to Enhance
Societal Readiness for El Nifio’s Impacts. International Journal of Disaster Risk Science,
11(3), 394—403. https://doi.org/10.1007/s13753-020-0027 5-w

Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare Earth Elements: Overview of Mining,
Mineralogy, Uses, Sustainability and Environmental Impact. Resources, 3(4), 614—635.
https://doi.org/10.3390/resources3040614

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network
(arXiv:1503.02531). arXiv._http://arxiv.org/abs/1503.02531

Huntingford, C., Jeffers, E. S., Bonsall, M. B., Christensen, H. M., Lees, T., & Yang, H. (2019).
Machine learning and artificial intelligence to aid climate change research and
preparedness. Environmental Research Letters, 14(12), 124007 .
https://doi.org/10.1088/1748-9326/ab4e55

lyer, L. S. (2021). Al enabled applications towards intelligent transportation. Transportation

16


https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1007/s41965-019-00023-0
https://doi.org/10.1038/s41598-021-87520-4
https://doi.org/10.1038/s41598-021-87520-4
https://doi.org/10.1007/s10311-023-01617-y
https://doi.org/10.1007/s10311-023-01617-y
https://doi.org/10.3390/app132112019
https://doi.org/10.3390/app132112019
http://arxiv.org/abs/2308.06767
https://doi.org/10.2139/ssrn.3804983
https://doi.org/10.1016/j.ecoinf.2023.102165
https://doi.org/10.1016/j.ecoinf.2023.102165
https://doi.org/10.1007/s13753-020-00275-w
https://doi.org/10.3390/resources3040614
https://doi.org/10.3390/resources3040614
http://arxiv.org/abs/1503.02531
https://doi.org/10.1088/1748-9326/ab4e55
https://doi.org/10.1088/1748-9326/ab4e55

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Engineering, 5, 100083._https://doi.org/10.1016/j.treng.2021.100083

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., & Kalenichenko, D.
(2017). Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference (arXiv:1712.05877). arXiv.

http://arxiv.org/abs/1712.05877
Kirkpatrick, K. (2023). The Carbon Footprint of Atrtificial Intelligence. Communications of the

ACM, 66(8), 17-19._https://doi.org/10.1145/3603746

Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). Quantifying the Carbon Emissions
of Machine Learning (Version 2). arXiv._https://doi.org/10.48550/ARXIV.1910.09700

Liu, Y., Cao, J., Liu, C., Ding, K., & Jin, L. (2024). Datasets for Large Language Models: A
Comprehensive Survey (arXiv:2402.18041). arXiv._http://arxiv.org/abs/2402.18041

Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang, Y., Wang, J., Gao, X., Zhong, T.,
Pan, Y., Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu, X., Zhang, T., Qiang, N., ...
Ge, B. (2024). Understanding LLMs: A Comprehensive Overview from Training to
Inference (arXiv:2401.02038). arXiv._http://arxiv.org/abs/2401.02038

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M.,
& Dean, J. (2021). Carbon Emissions and Large Neural Network Training
(arXiv:2104.10350). arXiv._http://arxiv.org/abs/2104.10350

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes

in

climate models. Proceedings of the National Academy of Sciences, 115(39), 9684—9689.
https://doi.org/10.1073/pnas.1810286115

Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong
eastern Pacific El Nifio events using deep learning. Scientific Reports, 13(1), 21150.
https://doi.org/10.1038/s41598-023-45739-3

Sahil, K., Mehta, P., Kumar Bhardwaj, S., & Dhaliwal, L. K. (2023). Development of mitigation
strategies for the climate change using artificial intelligence to attain sustainability. In
Visualization Techniques for Climate Change with Machine Learning and Artificial
Intelligence (pp. 421-448). Elsevier.
https://doi.org/10.1016/B978-0-323-99714-0.00021-2

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep
Learning in NLP (Version 1). arXiv._https://doi.org/10.48550/ARXIV.1906.02243

Taddeo, M., Tsamados, A., Cowls, J., & Floridi, L. (2021). Atrtificial Intelligence and the Climate
Emergency: Opportunities, Challenges, and Recommendations. SSRN Electronic

Journal.
https://doi.org/10.2139/ssrn.3873881

Talaei Khoei, T., Ould Slimane, H., & Kaabouch, N. (2023). Deep learning: Systematic review,
models, challenges, and research directions. Neural Computing and Applications, 35(31),
23103—-23124. https://doi.org/10.1007/s00521-023-08957-4

Vinuesa, R., Azizpour, H., Leite, |., Balaam, M., Dignum, V., Domisch, S., Fellander, A.,

17


https://doi.org/10.1016/j.treng.2021.100083
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877
https://doi.org/10.1145/3603746
https://doi.org/10.48550/ARXIV.1910.09700
http://arxiv.org/abs/2402.18041
http://arxiv.org/abs/2401.02038
http://arxiv.org/abs/2104.10350
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1038/s41598-023-45739-3
https://doi.org/10.1038/s41598-023-45739-3
https://doi.org/10.1016/B978-0-323-99714-0.00021-2
https://doi.org/10.1016/B978-0-323-99714-0.00021-2
https://doi.org/10.48550/ARXIV.1906.02243
https://doi.org/10.2139/ssrn.3873881
https://doi.org/10.2139/ssrn.3873881
https://doi.org/10.1007/s00521-023-08957-4

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence
in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233.
https://doi.org/10.1038/s41467-019-14108-y

Wong, C. (2024). How Al is improving climate forecasts. Nature, 628(8009), 710-712.
https://doi.org/10.1038/d41586-024-00780-8

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Behram,

F.

A., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Candido, S.,
Brooks, D., Chauhan, G., Lee, B., Lee, H.-H. S., ... Hazelwood, K. (2022). Sustainable
Al: Environmental Implications, Challenges and Opportunities (arXiv:2111.00364).
arXiv._http://arxiv.org/abs/2111.00364

Zhang, B., & Qiao, Y. (2024). Al, Sensors, and Robotics for Smart Agriculture. Agronomy, 14(6),

1180. _https://doi.org/10.3390/agronomy14061180

18


https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1038/d41586-024-00780-8
https://doi.org/10.1038/d41586-024-00780-8
http://arxiv.org/abs/2111.00364
https://doi.org/10.3390/agronomy14061180

