
Review of Quantum Key Distribution

Hyunjo Kim

February 2023

Abstract

In this short review paper, I will be looking into Quantum Key Dis-
tribution (QKD) in detail. With short introductions to basic ideas of
qubits, quantum gates, and quantum teleportation, we explore the in-
ner workings of QKD protocols, such as the BB84 Protocol, BBM92
Protocol, and E91 Protocol.

1 Introduction

Quantum Cryptography is an important concept within quantum comput-
ing. Not only does it offer a novel way to view encryption, it requires us
to re-design our security measures. QKD offers solutions to create private
keys in a post-quantum world, using properties of quantum mechanics. As
IBM introduces their new 433-qubit processors, there are both increasing
benefits and concerns as quantum hardware progresses.

2 Quantum Bits, Gates, and Important Results

2.1 Qubits

As a reader of this paper, you may already be aware of the formulation of
a qubit. It is generally written in the form of:

|ψ⟩ = α |0⟩+ β |1⟩

1



Now, |0⟩ and |1⟩ are the computational basis states, which we will use
most frequently in quantum computing and quantum cryptography. The
quantum bit is an abstract mathematical framework through which we view
quantum information and manipulate it. This is quite an abstract concept,
but this allows us to make higher-level calculations without necessarily
relying on physical equipment.

There are also multi-qubit cases, where we may have N qubits. This
means we have a Hilbert space of 2n. This is just a case of permutations,
if we have two qubits, we have the following computational basis states:

|00⟩ , |01⟩ , |10⟩ , |11⟩

2.1.1 Visualizing Qubits

We can also visualize (normalized) qubits using something called a bloch

sphere [1]:
Given that a quantum state can be described as such:

|ψ⟩ = α |0⟩+ β |1⟩
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where α and β are complex numbers known as the probability amplitudes,
following this: |α|2 + |β|2 = 1. Hence, in exponential form, it can be written
as:

|ψ⟩ = rαe
iϕα |0⟩+ rβe

iϕβ |1⟩
e−iϕα |ψ⟩ = rα |0⟩+ rβe

i(ϕβ−ϕα) |1⟩

But the phase on state |psi⟩ has no observable effects. And using the fact
this is normalized, we can rewrite it as such:

|ψ⟩ = cos
(θ
2

)
+ sin

(θ
2

)
eiϕ

It may seem weird to have θ
2
, but this is just entirely dependent on our

definitions for the interval. There are, in fact, infinitely many points on the
bloch sphere, and we can plot such qubit states on this. However, after
measurement, it will collapse into some state according to the measure-
ment basis.

2.2 Quantum Gates

2.2.1 Hadamard Gate

Just like in classical computing, when we try to manipulate our information,
we use logic gates. In our case, the quantum gates can be defined as uni-
tary transformations, meaning that they follow the condition that U †U = I.
An important example is the Hadamard Gate, where it essentially trans-
forms states into superpositions:

H =
1√
2

[
1 1
1 −1

]
For example, when a Hadamard Gate acts on |0⟩, we have the follow-

ing:

H |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
In fact, there are infinitely many two by two unitary matrices, hence

infinitely many single qubit gates. This is just a general introduction to
quantum bits and gates, but we can see how we can start applying them
in the latter sections.

3



2.2.2 CNOT Gate

Let’s have a look at the important CNOT gate - the quantum version of the
traditional XOR Logic Gate.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


which looks like this in quantum circuit representation:

The Controlled NOT gate, is a two qubit gate, which has a control qubit
and a target qubit. If the control qubit state is |1⟩, the target qubit state will
be flipped from |1⟩ to |0⟩ and vice versa. If the control qubit is |0⟩, the target
qubit state will not undergo any change.

2.3 No-cloning Theorem

This is an important result in quantum cryptography. Unfortunately, cloning
of an unknown arbitrary quantum state is impossible. To prove the no
cloning theorem, let’s assume there is some unitary transformation that
can clone states. The figure below demonstrates what it might look like on
an arbitrary state ψ. [2]

If we consider two quantum states, |ψ⟩ and |ϕ⟩, such that we want to
copy our first state, |ψ⟩ onto the second slot which starts off with |ϕ⟩, hence
the initial state is:
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|ψ⟩ ⊗ |ϕ⟩

If there is some unitary evolution for cloning for any two arbitrary states:

U(|ψ⟩ ⊗ |ϕ⟩) = |ψ⟩ ⊗ |ψ⟩
U(|α⟩ ⊗ |ϕ⟩) = |α⟩ ⊗ |α⟩

After taking innerproducts of the two equations (NB U †U = 1):

⟨ψ|α⟩ = (⟨ψ|α⟩)2

Which means either the two states must be identical or orthogonal.
Hence, there does not exist a unitary evolution that clones arbitrary states.

3 Is Quantum Computing the end of cryptog-
raphy?

When the idea of a quantum computer emerged in the early 1980s - pro-
posed by physicists such as Feynman - it was imagined that computations
and simulations would speed up. For example, Grover’s algorithm and
Shor’s algorithm shows clear speeds up compared to classical algorithms.
The currently widely used RSA cryptosystem can theoretically be broken
between tens of seconds to months, whereas current classical methods
will take billions of years to crack.

4 Quantum Teleportation

Quantum teleportation is a neat protocol to transfer quantum information
remotely without the aid of a quantum communications channel. This pro-
cess involves three qubits: |ψ⟩, which is Alice’s quantum state, |β⟩A, which
is one of the entangled particles, and |β⟩B, which is other half of the en-
tangled pair that is currently in Bob’s possession. So, without measuring
the quantum state, how can Alice send |ψ⟩ to Bob?
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Now, what does this quantum circuit actually do? So if we look at our
initial state, where Alice’s EPR state is |β00⟩ (after our first barrier):

|ψinitial⟩ |βA⟩ = (α |0⟩+ β |1⟩)⊗ 1√
2
(|00⟩+ |11⟩)

=
1√
2
[α |0⟩ (|00⟩+ |11⟩) + β |1⟩ (|00⟩+ |11⟩)]

With two qubits in her possession, Alice sends them through a CNOT
Gate, through which she gets the following state:

1√
2
[α |0⟩ (|00⟩+ |11⟩+ β |1⟩ (|10⟩+ |01⟩)]

which you can verify using matrix multiplication. And after the Hadamard
Gate, our state can be simplified to this:

1

2
[|00⟩ (α |0⟩+ β |1⟩) + |01⟩ (α |1⟩+ β |0⟩) + |10⟩ (α |0⟩ − β |1⟩) + |11⟩ (α |1⟩ − β |0⟩)]

After performing a measurement, Alice can get four possible results:
|00⟩ , |01⟩ , |10⟩ , |11⟩. Hence Bob’s corresponding measurememnts are:

|ψ1⟩ = α |0⟩+ β |1⟩
|ψ2⟩ = α |1⟩+ β |0⟩
|ψ3⟩ = α |0⟩ − β |1⟩
|ψ4⟩ = α |1⟩ − β |0⟩
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Now based on Alice’s measurement (she can encode her results using two
classical bits), he should apply these quantum logic gates:

00 −→ I

01 −→ X

10 −→ Z

11 −→ Y

And after using these logic gates, Bob should get Alice’s state which she
wanted to teleport.

5 Quantum Key Distribution

5.1 BB84 Protocol

One of the oldest protocols was demonstrated by Brassard and Bennett
in 1984 [3]. We must establish necessary conditions for it to work. They
share a secure quantum channel, a classical communication channel with-
out losses and errors, and they have trusted devices. Let’s say we have
two friends, Alice and Bob, who wish to find a secure key through this pro-
tocol. Alice begins by choosing a random bit using a random generator:
10100. She then chooses a random basis, either in x or z, and thus en-
codes the bit and sends it through the quantum channel. So, if her bases
were as follows, Bx, Bz, Bz, Bx, Bx, the qubits she sends are:

|−⟩ , |0⟩ , |1⟩ , |+⟩ , |+⟩

Now, Bob also chooses a random basis to measure the qubit in: Bz, Bz, Bx, Bz, Bx.
When the bases are the same, Alice and Bob will share the same classical
bit. When they are not, the measurement will give either outcome with a
probability of 1/2, hence it is important that they repeat this process of en-
coding and decoding a reasonable amount of times. After, they can decide
which bases to discard.

To summarise the steps:

• Alice chooses a random bit and a random basis

• Alice encodes the bit with the chosen basis and sends a qubit to Bob
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• Bob chooses a random basis

• Bob measures the received qubit in chosen basis and decodes the
bit

• Alice and Bob repeat these steps, then they share the bases used in
a public channel

• They discard the bases which are not the same and agree on a key
without revealing the value of the bits

But, how does it protect against possible eavesdroppers? First, in order
to test whether there even is an eavesdropper, Alice and Bob will share
some bases and then Alice will send the classical bits. Eve, our eaves-
dropper, measures in a random basis and re-encodes the bit according to
her measurement. For example, if Alice’s bit was 1 and encoded it in the
x basis, her qubit would be |−⟩. If Eve’s measurement basis was in the z
basis, her measurement could either encode it through |0⟩ or |1⟩. If Bob’s
measurement was in the x basis, B’s qubit can either be |+⟩ or |−⟩, but if
Bob’s corresponding measurement led to bit 0, despite them knowing they
have the same basis, they will know that there was an eavesdropper that
changed the original qubit. This leads us to another question: how many
bits does Alice and Bob have to send to ensure that there is no eavesdrop-
per?

Let’s try to find the probability of not finding Eve. For Eve, she has a 1
2

chance of getting the right basis. And even if she does get it wrong, she
has a 1

2
chance of not being detected, given that Alice and Bob have the

same basis, which also has a 1
2

chance. Hence the probability of not being
detected after k bits is:

p =
(1
2
+

1

2
× 1

2

)k

=
(3
4

)k

For Alice and Bob, the probability of detecting her is:

p = 1−
(3
4

)k

You may notice that as k gets large, the probability of detecting Eve con-
verges. This is crucial as it demonstrates how secure the BB84 Protocol
is in detecting possible eavesdroppers.
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5.2 BBM92 Protocol

The BBM92 Protocol is conceptually very similar to the BB84 Protocol, but
this time we use an EPR pair. An EPR Pair is created and sent to Alice
and Bob:

|Φ+⟩ = |00⟩+ |11⟩√
2

They then measure in a random basis without telling each other. Alice and
Bob share the bases that they used over a classical channel and discards
any measurements where they used different bases. Because of the en-
tangled pairs, if they share the same basis, Alice and Bob should always
have the same measurement outcome. Hence, after the protocol, they
should have the same key. One of the advantages of the BBM92 Protocol
is that Alice and Bob can decide to complete a measurement just before
the key is used so that the information is secured within this quantum state.

5.3 E91 Protocol

5.3.1 Bell’s Inequality

Bell’s inequality is a key concept in the E91 Protocol. Hence, I will explore
it before delving into the specifics of the Ekert91 Protocol. Bell’s inequality
demonstrated the clear difference between classical and quantum physics.
[2]

Let’s say we send one particle each to Alice and Bob. They both are
able to perform two types of measurements on this particle: Q or R for Alice
and S or T for Bob. Each of the measurements can only give out either
+1 or -1. And for the sake of argument, they perform this measurement
at the same time so that there can be no physical influences affecting the
outcome of the measurement.

Now, there are two reasonable assumptions we can make with regards
to this experiment:

• Local Determinism: Alice’s measurement should not be affected by
Bob’s. It only depends on the locally determined physical state that
Alice receives.
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• Objective Reality: The result of the measurement is not probabilistic,
meaning that the value is already encoded in the particle’s internal
state.

We will consider this quantity (which proves to have a meaningful re-
sult):

QS +RS +RT −QT = (Q+R)S + (R−Q)T

Because the values they are allowed is either +1 or -1, it is easy to see
that (Q + R)S = 0 or (R − Q)T = 0 In either of these cases, our starting
quantity will be +2 or -2. Now, let’s consider a probabilistic model, where:

P = p,Q = q, R = r, S = s

where the lower cases represent the probability distribution corresponding
to the measurement performed. Hence, if we consider the expectation
value of the quantity, we can find an inequality:

E(QS +RS +RT −QT ) =
∑
qrst

p(q, r, s, t)(qs+ rs+ rt− qt)

where p(q, r, s, t) represents some joint probability distribution. But, be-
cause the average value of this quantity will always be less than two, we
can separate the summation and write it like this:

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2

Now, this is the classical picture. The nature of quantum mechanics
violates the above inequality, and this is what we use in the Ekert91 Pro-
tocol.
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5.3.2 The Protocol

[4]
The protocol [5] uses Bell inequality to detect a possibe eavesdropper.

After receiving an EPR pair, Alice and Bob both measure in a certain basis:
a1, a2, a3 and b1,b2,b3.

If they happen to choose the same orientations/basis, they will end up
with the same measurement outcome. After quantum communication, Al-
ice and Bob separates the bases they used into two groups after sharing.
The first group is where Alice and Bob used different bases, and the sec-
ond group is where they used the same bases.

Now, we can assign Alice and Bob such observables:

A = (+1) |a⟩ ⟨a|+ (−1) |a⊥⟩ ⟨a⊥|
B = (+1) |b⟩ ⟨b|+ (−1) |b⊥⟩ ⟨b⊥|

where a and b can be one of the bases as mentioned before.
Now, to check for an eavesdropper, they use the instances when they

have these bases:

(a3,b3), (a3,b1), (a1,b1), (a1,b3)
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Which are the same arguments used for the CHSH Bell Inequality we
looked in the section before. The reason Ekert added another basis was
because he wanted to detect the presence of an eavesdropper without
openly exposing his key. Before showing how this relates to the Bell In-
equality, we will use the correlation coefficients as follows:

E(ai,bj) = P11(ai, bj) + P00(ai, bj)− P10(ai, bj)− P10(ai, bj)

Which allows us to create a sum with such correlation coefficients, directly
leading us to the Bell Inequality.

S = E(a1, b1) + E(a3, b1) + E(a3, b3)− E(a1, b3) ≤ 2

If there is no eavesdropper, we should have S = 2
√
2, but if there is an

eavesdropper, the system behaves classically so that S ≤
√
2
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