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Abstract: In the present day, around 9900 satellites are orbiting the Earth. To further
understand and model these orbits, this paper introduces a dynamics model aimed at
achieving higher fidelity in orbit simulations, accounting for different angles, velocities,
positions, and accelerations. Additionally, perturbations in space and their effects on
various types of orbits are studied. Three major perturbations are tested: third-body
perturbations, Earth's oblateness (J2 effect), and atmospheric drag. After plotting these
orbits, it was discovered that the most significant perturbation to Earth-orbiting objects
is the J2 effect, followed by atmospheric drag and third-body perturbations. While these
perturbations may seem to have a minuscule effect on orbits, the numbers, especially
those resulting from the J2 effect, can be incredibly significant in orbital mechanics,
where calculations must be precise. The insights gained from this project highlight the
necessity of using advanced models and real-time data to refine predictions and ensure
satellites' precise and stable operation. By continuously improving the understanding
and modeling of these perturbations, the reliability and effectiveness of satellite missions
are enhanced, which are integral to space exploration, communication, navigation, and
Earth observation.

Introduction

Space exploration is driven by humanity’s insatiable curiosity and thirst for knowledge,
offering both intrinsic and extrinsic benefits that make it a necessity in today’s world. At its core,
space exploration seeks to unravel the mysteries of the universe, deepening the understanding
of the cosmos and advancing fields such as astrophysics and cosmology. By utilizing
cutting-edge instruments like probes, satellites, and telescopes, scientists gather invaluable data
about celestial bodies and the universe’s natural state, contributing to groundbreaking
discoveries about black holes, dark matter, and the origins of life. The search for other potential
habitats and intelligent life on exoplanets is a crucial aspect of space exploration, providing
insights into whether we are alone in the universe and the conditions necessary to support life
beyond Earth. The technological challenges of space exploration drive innovation, leading to
advancements with far-reaching applications on Earth, from cell phone cameras and solar
panels to the indispensable Global Positioning System (GPS). The economic benefits of space
exploration are substantial, fostering job creation and economic growth through the collaborative
efforts of government space agencies and private companies. Furthermore, space exploration
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enhances the ability to detect and mitigate near-Earth objects (NEOs) that could threaten the
planet, providing critical tools and knowledge for planetary defense. As Earth’s resources
become strained, space colonization emerges as a potential solution for humanity’s long-term
survival, with efforts to establish a presence on Mars or other celestial bodies offering valuable
lessons in sustainable living. Space exploration also fosters international cooperation and
diplomacy, as evidenced by the collaborative nature of the International Space Station (ISS),
which unites space agencies from multiple countries in a shared mission. This collaborative
spirit promotes peaceful interaction, trust, and the exchange of expertise among nations. The
endeavor of space exploration inspires society by showcasing human creativity, critical thinking,
and problem-solving skills, essential for addressing global challenges. It cultivates a culture that
values education, innovation, and the relentless pursuit of knowledge, inspiring future
generations to pursue careers in science, technology, engineering, and mathematics (STEM).
The transformative nature of space exploration, with its capacity to improve humanity and foster
a sense of interconnectedness, makes it a journey of self-discovery and a testament to the
unwavering human spirit. As other planets are explored and the universe’s mysteries are
contemplated, space exploration remains a vital and inspiring pursuit that advances our
understanding and betterment of life on Earth.

Humans have always gazed at the night sky with wonder, dreaming of the vast expanse
of space. By the mid-20th century, these dreams began to transform into reality with the advent
of rockets capable of achieving orbital velocities. The foundation for space exploration was laid
with the development of long-distance rockets by Nazi Germany in the 1930s and 1940s,
notably the V-2 missiles used during World War II. Following the war, the United States and the
Soviet Union accelerated their missile programs, leading to groundbreaking achievements. The
launch of the Soviet Union's Sputnik 1 in 1957 marked the first artificial satellite to orbit Earth,
igniting the space race. Yuri Gagarin's historic orbit in 1961 made him the first human in space,
followed by the United States launch of Explorer 1 in 1958 and John Glenn's orbit in 1962. The
pinnacle of early space exploration was the Apollo program, with President Kennedy's goal of
landing a man on the Moon realized on July 20, 1969, when Neil Armstrong took his "giant leap
for mankind." Between 1969 and 1972, six Apollo missions further explored the Moon, providing
invaluable scientific data. Unmanned spacecraft like the Mariner and Voyager missions
significantly contributed by photographing and probing the Moon, Mars, and other celestial
bodies. The 1970s saw the launch of Skylab, America's first space station, and the
Apollo-Soyuz Test Project, the first international crewed space mission. The 1980s were marked
by the Space Shuttle program, which revolutionized space missions by enabling satellite
deployment, scientific research, and the construction of the International Space Station (ISS),
despite tragic setbacks with the Challenger and Columbia disasters. The Gulf War highlighted
the strategic importance of space-based assets, with satellites providing critical intelligence. The
ISS, continuously occupied since 2000, symbolizes international cooperation, hosting astronauts
and researchers from around the world. Advances in space launch systems have aimed to
reduce costs and improve reliability, with various nations and private companies competing in
the commercial launch market. Today, modern space exploration pushes the boundaries of what
is possible, focusing on Mars with NASA and its partners sending orbiters, landers, and rovers
to gather data and prepare for human missions. The Curiosity Rover's radiation data and the
MARS 2020 Rover's exploration of Martian resources are paving the way for manned missions
to the Red Planet, targeted for the 2030s, reflecting humanity's relentless pursuit of knowledge
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and spirit of discovery. Orbital mechanics, in particular, has played a crucial role in the success
of human space missions, from the precise calculation of launch windows for Apollo missions to
the navigation of rovers on Mars. This field has enabled the planning and execution of complex
trajectories and maneuvers, ensuring that spacecraft reach their intended destinations and
perform their missions effectively.

Orbital mechanics, or astrodynamics, is defined as the application of celestial mechanics
and ballistics to practical problems involving the motion of spacecraft, such as rockets and
satellites. By employing Newton's laws of motion and universal gravitation, this field is central to
determining spacecraft trajectories, executing orbital maneuvers, and planning interplanetary
transfers, all crucial for successful space missions. It primarily focuses on the dynamics of
artificial objects in space, although it is rooted in the broader study of celestial mechanics, which
encompasses the motion of natural astronomical bodies like planets, moons, and comets.
According to the NASA Earth Observatory, the evolution of orbital mechanics traces back to
Johannes Kepler’s early 17th-century work on planetary orbits and Isaac Newton’s formulation
of the laws of motion and universal gravitation. Advances continued with contributions from
Leonhard Euler and Carl Friedrich Gauss, who refined methods for orbit determination. The field
saw significant development in the 20th century with Samuel Herrick’s pioneering work and the
integration of numerical techniques and powerful computers, which enabled precise space
navigation and mission planning. Today, orbital mechanics remains a vital discipline, essential
for operating and navigating satellites and space probes, and continues to leverage both
classical mechanics and, when necessary, the more accurate predictions provided by general
relativity for complex, high-gravity scenarios.

Perturbations in orbital mechanics encompass the various external forces and effects that
cause deviations from the idealized orbits predicted by Kepler's laws. These perturbations
significantly impact the long-term stability of satellites, particularly those in non-equatorial orbits.
Gravitational perturbations from celestial bodies such as the Moon and the Sun introduce
additional forces that can alter a satellite's trajectory over time, leading to deviations that require
frequent adjustments to maintain mission objectives. For satellites in low Earth orbit (LEO),
atmospheric drag plays a prominent role; despite the thinness of Earth's atmosphere at these
altitudes, residual atmospheric particles create a frictional force that gradually slows the
satellite's orbital speed, leading to a continuous decrease in altitude and eventual orbital decay
if corrective measures are not applied. Earth's oblateness, due to its equatorial bulge, causes
variations in the gravitational field experienced by the satellite, which introduces complexities
such as precession and nodal regression that can affect the satellite's orbital parameters and
contribute to long-term changes. Understanding and modeling these perturbations are crucial
not only for predicting satellite behavior but also for ensuring the accuracy and stability of
satellite operations. Their significance lies in their impact on mission planning, satellite longevity,
and the ability to execute long-term objectives in space.

To further understand and model orbits, this paper introduces a dynamics model aimed at
achieving higher fidelity in orbit simulations, accounting for different angles, velocities, positions,
and accelerations. Additionally, perturbations in space and their effects on various types of orbits
are examined. Three major perturbations are considered: third-body perturbations, Earth's
oblateness (J2 effect), and atmospheric drag. By analyzing the orbital variations, it is determined
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that the most significant perturbation to Earth-orbiting objects is the J2 effect, followed by
atmospheric drag and third-body perturbations. While the effects of these perturbations may
seem minuscule, their impact, especially from the J2 effect, can be incredibly significant in
orbital mechanics, where precision is paramount. The insights gained from this project
underscore the necessity of using advanced models and real-time data to refine predictions and
ensure satellites' precise and stable operation. Continuously improving the understanding and
modeling of these perturbations enhances the reliability and effectiveness of satellite missions,
which are integral to space exploration, communication, navigation, and Earth observation.

Orbital Mechanics

Keplerian Motion

Graph from Space Traffic Management by Carolin Frueh
Figure 1: Illustration of the Orbital Elements in WCS
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Graph from Space Traffic Management by Carolin Frueh
Figure 2: Illustration of the orbital elements in the ECI coordinate system
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Graph from Space Traffic Management by Carolin Frueh
Figure 3: Illustration of the orbital elements in the Cartesian coordinate system

Two-body motion in orbital mechanics, specifically Keplerian motion, involves the
gravitational interaction between two bodies where one body orbits the other. This interaction
can result in four different types of trajectories: circular, elliptical, parabolic, and hyperbolic.
However, this discussion focuses on elliptical orbits, as described by Kepler's laws. When
analyzing satellite motion, it is typically assumed that the smaller body (the satellite) does not
perturb the larger body (Earth) due to its significantly smaller mass. According to Kepler's first
law, the orbit of the satellite is an ellipse with the Earth at one focus. The second law, the law of
equal areas, states that a line segment joining the satellite and Earth sweeps out equal areas
during equal time intervals, leading to variable orbital speed depending on the satellite's position
in its orbit. The third law establishes a relationship between the orbital period and the
semi-major axis, stating that the square of the orbital period is proportional to the cube of the
semi-major axis. Key parameters, known as Keplerian elements, define the orbit's size
(semi-major axis(a)), shape (eccentricity(e)), orientation (inclination(i), longitude of ascending
node(Ω), and argument of periapsis(ω)), and position of the orbiting body at a given time (true
anomaly). These elements enable precise predictions of orbital paths, essential for satellite
operations and space mission planning.

Key 2 body Equations:

In orbital mechanics, understanding the dynamics of celestial bodies requires a set of key
equations that describe their interactions and motions within a two-body system. These
equations provide insights into the total energy, relative velocity, and orbital characteristics of the
bodies involved.

The total energy equation is given by:
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Equation 1 represents the total energy in a two-body system, combining kinetic and potential
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the stability and dynamics of the orbit.

The relative acceleration equation is expressed as:
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Equation 2 describes the derivative of velocity which is acceleration , between the two bodies𝑣 𝑎
in the system. This derivative is derived from the rate of change of the separation distance and𝑟 
indicates how quickly the velocity between the two bodies is changing due to their mutual
gravitational attraction. Understanding this relative acceleration is crucial for predicting the future
positions of the bodies and for calculating their orbital trajectories. The orbital position equation
is given by:

𝑟 = ℎ2

µ(1+𝑒𝑐𝑜𝑠θ)(𝑐𝑜𝑠θ 𝑝+𝑠𝑖𝑛θ 𝑞)
(4)

Equation 4 represents the position vector in an orbital system, where is the specific angular𝑟 ℎ
momentum, is the orbital eccentricity, and is the true anomaly. The terms and describe𝑒 θ 𝑝 𝑞
the coordinates in the orbital plane. This equation is fundamental for describing the elliptical
orbit of the bodies, showing how the position changes with the true anomaly and eccentricity.
The orbital velocity equation is expressed as:

𝑣 = µ

ℎ(−𝑠𝑖𝑛θ+(𝑒+𝑐𝑜𝑠θ))𝑞
(5)

Equation 5 provides the velocity of the orbiting body, where represents the specific angular𝑣 ℎ
momentum, θ is the true anomaly, and is the orbital eccentricity. The terms𝑒

) account for the components of the velocity in the orbital plane. This− 𝑠𝑖𝑛θ + (𝑒 + 𝑐𝑜𝑠θ 𝑝
equation is crucial for understanding the speed of the body along its orbit and for calculating the
orbital parameters and dynamics.

Frames:
The perifocal frame is a natural reference frame for analyzing Keplerian orbits, centered at the
focus of the orbit and aligning with its geometric properties. Its x-axis( ) points from the focus𝑝
through periapsis, the y-axis ( ) is orthogonal to in the orbital plane, and the z-axis( ) is𝑞 𝑝 𝑤
perpendicular to the orbital plane, aligned with the angular momentum vector. This formulation
simplifies the kinematics of orbital motion, providing a foundation for more complex
three-dimensional orbital analyses.

Keplerian elements offer a simplified, idealized approximation of an orbit, essential for predicting
the motion of celestial bodies. The precise understanding of orbital elements facilitates
advancements in space exploration, satellite deployment, and the study of celestial mechanics.
However, real orbits experience changes due to gravitational perturbations and relativistic
effects, necessitating continuous adjustment of these elements for accurate modeling. This
continuous adjustment is crucial as it ensures the precision and reliability of orbital predictions,
which is vital for mission success and the safe operation of satellites.
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In orbital mechanics, several fundamental physics equations of motion are essential for
describing and predicting the behavior of celestial bodies. These equations encompass the
forces involved, the derivatives of position and velocity, and the overall dynamics of motion.

𝐹 =  𝑚𝐴
(6)

Equation 6 is Newton's second law, which states that the force acting on an object is equal to𝐹
its mass multiplied by its acceleration . In the context of orbital mechanics, this law is𝑚 𝐴
foundational, as it describes how the gravitational forces cause celestial bodies to accelerate
and change their motion.

𝐹 =  𝐺𝑀𝑚

𝑟2

(7)
Equation 7 represents the gravitational force between two masses and , separated by a𝑀 𝑚
distance . Here, is the gravitational constant (6.67*10^11). This inverse-square law is crucial𝑟2 𝐺
for understanding the attractive force that governs the motion of planets, satellites, and other
celestial bodies within their orbits.

𝐹 =  µ𝑚

𝑟2 

(8)
Equation 8 describes the force acting on a mass due to a central body with gravitational𝐹 𝑚 
parameter μ, at a distance . This equation is fundamental in orbital mechanics, as it simplifies𝑟
the calculation of gravitational forces in a two-body system by using μ, which is specific to the
central body like Earth or the Sun.

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑣 = δ𝑟
δ𝑡

(9)

Equation 9 states that the derivative of position with respect to time is the velocity . It𝑟 𝑣
highlights the relationship between a body's position and its velocity, which is fundamental for
tracking the motion of orbiting bodies over time. Knowing the velocity allows us to determine
how the position of a satellite changes, providing insights into its trajectory.

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑎 = δ𝑣
δ𝑡

(10)
Equation 10 expresses that the derivative of velocity with respect to time is the acceleration .𝑣 𝑎
It signifies how the velocity of a body changes over time due to forces acting on it, such as
gravity. Acceleration is a key quantity in determining how the speed and direction of a satellite's
motion evolve under gravitational influences.

δ𝑋‾
δ𝑡  =  𝑓(𝑥‾)
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(11)
Equation 11 represents the derivative of the position vector with respect to time, which is theδ𝑋‾

δ𝑡
velocity v. In orbital mechanics, this relationship is crucial as it describes how the position of a
celestial body changes over time. Knowing the velocity allows for the prediction of the body's
future position along its orbital path.

δδ𝑋‾
δδ𝑡  =− µ

𝑟3 𝑟

(12)
Equation 12 describes the acceleration of a body under the influence of gravity in vectorδδ𝑋‾

δδ𝑡
form. Here, X is the position vector, μ is the standard gravitational parameter, and is the𝑟
distance between the two bodies. This form of Newton's second law in a gravitational field
shows how the gravitational force affects the body's motion, providing insights into the orbital
dynamics.

𝑥‾ =  [𝑟‾ 𝑣‾] =  [𝑥,  𝑦,  𝑧,  �̇�,  �̇�,  �̇�]
(13)

This vector notation, equation 13, represents the initial state vector, combining position ][𝑥,  𝑦,  𝑧
and velocity [ . This state vector is used to initialize the equations of motion in numerical �̇�,  �̇�,  �̇�]
simulations and integrators. It serves as the starting point for predicting future states of the
system.

𝑥‾̇ =  [𝑣‾ 𝐴]‾  =  [�̇�,  𝑦,˙   𝑧,˙ − µ

𝑟3 𝑥,  − µ

𝑟3 𝑦,  − µ

𝑟3 𝑧]

(14)
Equation 14 extends the state vector to include acceleration A, where the terms

represent the accelerations due to gravitational forces.[− µ

𝑟3 𝑥,  − µ

𝑟3 𝑦,  − µ

𝑟3 𝑧]

Numerical Integration (Runge-Kutta Method)

Numerical integrators, such as the Runge-Kutta method, are used to solve differential equations
in orbital mechanics. These integrators compute the future state of a system based on its
current state and the rates of change. The Runge-Kutta method, in particular, provides a robust
and accurate way to integrate the equations of motion over time, enabling precise predictions of
orbital trajectories.

By leveraging these fundamental equations and numerical methods, orbital mechanics can
accurately model and predict the complex motions of celestial bodies in space.
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Third Body Perturbation

In orbital mechanics, third-body perturbations arise from the gravitational influence of celestial
bodies other than the primary Earth and the orbiting satellite. For instance, consider a satellite in
low Earth orbit where the primary perturbations come from Earth's oblateness and atmospheric
drag. Introducing third bodies, such as the Sun and Moon, adds additional gravitational forces
that can alter the satellite's orbit, causing slight changes in parameters like eccentricity and
inclination. These perturbations are modeled by considering the Sun and Moon as point
masses, simplifying the complex gravitational interactions. To obtain accurate positions of the
Sun and Moon, NAIF SPICE kernels for a specific epoch are used, ensuring precise and reliable
data for the calculations.

The equations of motion for the satellite are derived by accounting for the gravitational forces
exerted by both the Earth and the third bodies (the Sun and Moon). The resulting acceleration is
influenced by the gravitational pull from these celestial bodies, leading to perturbative forces that
act opposite to the satellite's position vectors relative to the Sun and Moon. While these
third-body perturbations introduce subtle variations in the satellite's orbit, they are typically
minimal compared to the dominant effects of Earth's oblateness and atmospheric drag.
However, over time, these perturbations are crucial for accurately predicting satellite orbits, as
they can lead to deviations from expected paths.

The generalized form of third-body acceleration incorporates the sum of influences from multiple
third bodies, emphasizing the need to account for these effects in precise orbital mechanics
calculations. This highlights the nuanced but often minor influence of third-body effects in the
context of more substantial perturbations, ensuring the overall shape and characteristics of the
orbit remain largely unchanged, maintaining a near-consistent trajectory.

Major Equations for Third-Body Perturbations:
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(15)

Equation 15 describes the acceleration on a satellite due to the gravitational perturbations from
both the Sun and the Moon. These terms represent the differential gravitational forces exerted
by these third bodies on the satellite, causing deviations in its orbit that must be considered for
precise orbital predictions.
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(16)
Equation 16 represents the vector distance  between the Earth (E) and the Sun (S). Here,  𝑟

𝐸𝑆
𝑟

𝑆
is the position vector of the Sun, and  is the position vector of the Earth. This distance is𝑟

𝐸
fundamental for calculating the gravitational influence of the Sun on the satellite orbiting Earth.
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(17)

Equation 17 gives the second time derivative of the Earth-Sun distance vector, representing the
relative accelerations of the Earth and the Sun. It is crucial for understanding the dynamic
changes in the distance between the Earth and the Sun, influenced by their mutual gravitational
attractions and those of other celestial bodies.
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Equation 18 describes the total gravitational force acting on the Earth, considering contributions
from both the Sun and the Moon. Here, is the mass of the Earth,  is the mass of the Sun,𝑚

𝐸
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 is the mass of the Moon, is the Earth-Sun distance vector, and  is the Earth-Moon𝑚
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Equation 19 generalizes the concept of third-body perturbations to include multiple perturbing
bodies. It shows the total acceleration on a satellite due to Earth's gravity and the additional
gravitational influences from other bodies (e.g., the Sun, Moon, and other planets). Each term𝑛 
in the summation represents the perturbative effect of one of these additional bodies.

By understanding and applying these equations, one can accurately model the complex
third-body gravitational interactions that affect the orbits of satellites and other celestial objects,
leading to more precise predictions of their trajectories.

In a 24-hour period, an object starting from a position 7,000 km along the x-axis, with an initial
velocity of 7.72 km/s in the y-direction and 5 km/s in the z-direction, travels through space at a
90-degree angle relative to its starting point. The simulation was conducted with an initial epoch
of January 1, 2020, using precise data for the positions of the Sun and Moon obtained from
NAIF SPICE kernels.
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Figure 4: Orbital Plot w/ Third Body Perturbations

Figure 5: Error vs Time Graph of Third Body Perturbations
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Figure 4 illustrates the discrepancies in the X, Y, and Z coordinates of a satellite's predicted
position over time when considering four-body perturbations. The X Error, Y Error, and Z Error
are plotted in blue, orange, and green, respectively. The horizontal axis represents time in
seconds, ranging from 0 to approximately 86,400 seconds (or one day), while the vertical axis
shows the error in kilometers, with peaks reaching up to about 1.4 km.

This plot demonstrates how the positional errors in the satellite's orbit evolve over a 24-hour
period due to perturbative forces from additional celestial bodies like the Sun and Moon. The
periodic nature of the errors indicates that these perturbations have a cyclical impact on the
satellite's trajectory. Peaks in the graph signify times when the satellite's position deviates most
significantly from its predicted path, likely corresponding to specific alignments or positions
relative to the perturbing bodies. Overall, the graph underscores the importance of accounting
for third-body effects in orbital mechanics to maintain accurate satellite tracking and prediction.

The bottom graph presents the positional errors in the satellite's X, Y, and Z coordinates due to
third-body perturbations, particularly from the gravitational influences of the Sun and Moon, over
a period of time. The error magnitudes are shown in kilometers, plotted against time in seconds,
to demonstrate how these third-body forces cumulatively affect the satellite's trajectory. By
comparing the base orbit with the perturbed orbit and analyzing the error trends, the figures
collectively emphasize the significance of accurately accounting for third-body perturbations in
orbital mechanics for precise satellite navigation and mission planning.

Earth Oblateness

Earth's oblateness refers to the phenomenon where the planet is not a perfect sphere but
rather an oblate spheroid, meaning it is slightly flattened at the poles and bulging at the equator.
This shape is primarily due to the Earth's rotation, which causes a centrifugal force to push the
equatorial region outward. The equatorial diameter is about 43 kilometers (27 miles) greater
than the polar diameter. This oblateness affects various aspects of Earth's gravitational field,
influencing satellite orbits and global sea levels. Additionally, it contributes to distributing the
planet's mass and the dynamics of its atmosphere and oceans.

The J2 derivation, often referred to as the second zonal harmonic, is a key parameter in
the field of geodesy and astrodynamics that quantifies the extent of Earth's oblateness. It
represents the deviation of Earth's gravitational field from that of a perfect sphere, focusing on
the equatorial bulge. J2 is critical in predicting satellite orbits, as it causes perturbations due to
the uneven distribution of mass around the planet. Calculations involving J2 allow for more
accurate models of satellite trajectories, orbital decay, and the precession of orbital planes.
Understanding and incorporating J2 is essential for precise navigation, Earth observation
missions, and the study of gravitational interactions within the Earth-Moon system and beyond.

𝑂𝑏𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 = 𝐸𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 −𝑃𝑜𝑙𝑎𝑟 𝑅𝑎𝑑𝑖𝑢𝑠
𝐸𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠

(20)
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Equation 20 describes how much the Earth’s shape deviates from a perfect sphere. The
difference between the equatorial and polar radii, divided by the equatorial radius, gives a
measure of the Earth's flattening at the poles. This oblateness must be considered in orbital
mechanics because it affects the gravitational potential experienced by satellites, especially
those in low Earth orbit. The bulging at the equator, caused by the Earth's rotation, introduces
additional forces that perturb satellite orbits, necessitating adjustments to predictions and
models to ensure accuracy.

𝑢
𝐽

2

=
µ 𝐽

2
𝑅

⊕
2

2𝑟3 (1 − 3 𝑠𝑖𝑛2 ⊘)

(21)
Equation 21 represents the perturbative potential due to Earth's oblateness (J2 effect). The𝑢

𝐽
2

values and constants in this context are critical for understanding the perturbative forces acting
on a satellite in orbit around Earth. The gravitational parameter of Earth ( ), given as µ

398600.441500 , represents the product of the gravitational constant and the mass of𝑘𝑚3/𝑠2

Earth, crucial for calculating gravitational forces. The coefficient , valued at 0.00108264,𝐽
2

quantifies the Earth's oblateness, indicating how much the Earth's shape deviates from a perfect
sphere due to its equatorial bulge. The Earth's mean radius , set at 6378.00 km, is essential𝑅

⊕
for scaling the oblateness effect and calculating the gravitational potential at a given distance
from the Earth’s center. The equation also incorporates the factor , which(1 − 3 𝑠𝑖𝑛2 ⊘)
accounts for the variation of the potential with latitude, where represents the satellite's⊘
latitude. This perturbative potential is critical for precise orbital mechanics calculations,
especially for low Earth orbits where the J2 effect significantly influences orbital elements such
as precession and inclination.

The gravitational potential in a spherical harmonic expansion can be expressed as:𝑢

𝑢 = µ
𝑟

𝑛=0

∞

∑
𝑚=0

𝑛

∑ (
𝑅

⊕

𝑟 )𝑛𝑃
𝑛

1
𝑚

(𝑠𝑖𝑛 ⊘)[𝑐
𝑛

1
𝑚

𝑐𝑜𝑠(𝑚λ) + 𝑠
𝑛

1
𝑚

𝑠𝑖𝑛(𝑚λ)]

(22)

Equation 22 describes the gravitational potential using a series expansion in terms of𝑢
spherical harmonics. Here, is the Earth's mean radius, is the radial distance from the𝑅

⊕
𝑟

Earth's center,  is the associated Legendre polynomials, Θ is the colatitude, and is the𝑃
𝑛

1
𝑚

λ

longitude. The coefficients  and  represent the gravitational potential coefficients for𝑐
𝑛

1
𝑚

𝑠
𝑛

1
𝑚

cosine and sine terms, respectively. This expansion allows for the precise modeling of the
Earth's gravitational field by considering higher-order terms that account for irregularities in the
Earth's shape, providing a more accurate representation of the forces acting on a satellite.
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The gravitational acceleration   in Earth-Centered Earth-Fixed (ECEF) coordinates is𝑎
𝑔

𝐸𝐶𝐸𝐹

given by:

𝑎
𝑔

𝐸𝐶𝐸𝐹(𝑟𝐸𝐶𝐸𝐹, Θ) =− µ

𝑟2 𝑢𝐸𝐶𝐸𝐹 +
𝑙=2

∞

∑
µ𝐽

𝑙

𝑟2 (
𝑅

𝐸

𝑟 )𝑙𝑢
𝐽

𝑙

(23)

Equation 23 describes the total gravitational acceleration experienced by a satellite in ECEF
coordinates. The term  represents the primary gravitational acceleration, where is theµ

𝑟2 𝑢𝐸𝐶𝐸𝐹 µ

gravitational parameter of Earth and is the distance from the Earth's center. The summation𝑟
term accounts for the perturbative effects due to the Earth's oblateness (J2 effect). The factor

 scales the perturbative potential with the satellite's distance, providing a detailed(
𝑅

𝐸

𝑟 )𝑙𝑢
𝐽

𝑙

description of the gravitational forces in ECEF coordinates. This comprehensive equation is
crucial for accurate modeling and prediction of satellite orbits, ensuring that all significant
gravitational perturbations are considered.

In a 24-hour period, an object starting from a position 7,000 km along the x-axis, with an initial
velocity of 7.72 km/s in the y-direction and 5 km/s in the z-direction, with a displacement that
forms a 90-degree theta relative to its starting point.

Figure 6: Orbital Plot w/ J2 Perturbations

In this orbital plot, the J2 perturbation—resulting from Earth's oblateness—exerts a significant
yet often subtle influence on the satellite's trajectory. While the effects of J2 might not be
immediately visible in short-term observations, they are substantial over longer periods. The

15



perturbation causes gradual, periodic shifts in the satellite's orbit, affecting parameters such as
inclination and the orientation of the orbit. Although these changes might be minor on a daily or
weekly basis and may not show dramatic deviations from the initial path, they accumulate over
time, leading to significant long-term variations. This subtle yet impactful effect requires careful
monitoring and analysis to ensure precise orbital predictions and adjustments, underscoring its
importance in mission planning and satellite operations.

Figure 7: Error vs Time Graph of J2 Perturbations

The provided graph illustrates the positional errors in the X, Y, and Z dimensions of a satellite's
orbit over time due to the Earth's oblateness (J2 effect). The errors exhibit a periodic pattern,
with the X and Y errors showing significant fluctuations, peaking above 1400 km, while the Z
error remains comparatively lower. This periodic increase in error indicates the regular
perturbations in the satellite's orbit caused by the equatorial bulge of the Earth, which leads to
deviations from the expected trajectory. Understanding and accurately modeling these
perturbations are crucial for maintaining precise satellite operations, as uncorrected errors can
significantly impact navigation, mission planning, and collision avoidance in low Earth orbits.
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Atmospheric Drag

Atmospheric drag is a significant perturbation force acting on satellites in low Earth orbit
(LEO), particularly as they pass through the thermosphere at altitudes above 200 km. This drag
force leads to the exchange of energy and momentum between the satellite and the
atmosphere, causing a gradual decay in the satellite's orbit. Accurate modeling of atmospheric
drag is crucial for predicting satellite trajectories, ensuring precise orbit determination, aiding in
collision avoidance, and planning for re-entry predictions. Uncertainties in thermospheric mass
density (TMD) contribute to the difficulty in predicting atmospheric drag, impacting the overall
accuracy of orbit predictions.

Atmospheric drag is caused by the interaction between a satellite and the Earth's
atmosphere. As a satellite travels through the upper layers of the atmosphere, it encounters
atmospheric particles, despite the low density at these altitudes. The satellite's relative velocity
to these particles results in a transfer of linear momentum, leading to a deceleration force
opposite to its direction of motion. Factors such as the density of atmospheric particles, satellite
surface area, and the velocity of the satellite relative to the Earth's rotating atmosphere
contribute to the magnitude of this drag force.

Atmospheric drag is modeled by considering the density of atmospheric particles at the
satellite's altitude, the satellite's surface area, and its velocity relative to the atmosphere. The
basic drag acceleration formula incorporates these parameters, along with a drag coefficient C
which varies based on the satellite's shape and surface properties. The relative velocity is
computed by considering the satellite's motion in an Earth-centered inertial (ECI) frame and
accounting for the Earth's rotation and atmospheric winds. Advanced models also integrate
empirical and physical TMD models, such as the MSIS, Jacchia, and DTM models, to provide
more accurate representations of atmospheric density and variability. These models help refine
the predictions of drag forces and their effects on satellite orbits over time. The equation of
motion for the drag acceleration  on a satellite is given by:𝑎

𝑑𝑟𝑎𝑔

𝑎
𝑑𝑟𝑎𝑔

=− 𝐶
2 ρ(𝑟) 𝐴

𝑚 𝑣'2 𝑣'

𝑣'| |
(24)

Equation 24 describes the deceleration experienced by a satellite due to atmospheric drag.
Here,  is the drag coefficient, a dimensionless number representing the satellite's shape and𝐶
surface characteristics affecting drag. The term is the atmospheric density at the satellite'sρ(𝑟)
altitude , which varies with altitude. The ratio  represents the satellite's cross-sectional area𝑟 𝐴

𝑚

to its mass , indicating how much drag force is applied per unit mass. The term is the𝐴 𝑚 𝑣'

satellite's velocity relative to the atmosphere, and combines the square of the relative𝑣'2 𝑣'

𝑣'| |
velocity (magnitude) with the unit vector of the velocity direction, ensuring the drag force
opposes the satellite's motion. This equation is crucial for modeling the orbital decay of low
Earth orbit satellites, as atmospheric drag significantly impacts their trajectories, causing a
gradual reduction in altitude and eventual re-entry into the Earth's atmosphere.
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Graph from Space Traffic Management by Carolin Frueh
Figure 6: Atmospheric Density with Scale Heights

The table illustrates how atmospheric density decreases significantly with altitude, affecting the
drag on satellites. The ΔV values indicate how much propulsion effort is needed to counteract
this drag and maintain a stable orbit, with variations due to solar activity and the satellite's
area-to-mass ratio. During solar maximum, increased solar activity heats and expands the
Earth's atmosphere, increasing atmospheric drag on satellites, which requires greater ΔV to
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maintain their orbits. Conversely, during solar minimum, the atmosphere contracts, reducing
drag and thus the required ΔV. This table is essential for satellite mission planning and
operations, providing necessary data to ensure long-term orbital stability and proper functioning
of Earth-orbiting satellites.

In a 24-hour period, an object starting from a position 7,000 km along the x-axis, with an
initial velocity of 7.72 km/s in the y-direction and 5 km/s in the z-direction. The major
assumptions made here include selecting a C value of 2, assuming an altitude of 100 km with a
corresponding atmospheric density =0.0000000461 kg/ , considering a sphericalρ(𝑟) 𝑚3

cross-sectional area of , and a mass of 5 kg for the object.10−3𝑚2

Figure 8: Orbital Plot w/ Drag Perturbations

In an orbital plot affected by atmospheric drag, the trajectory of a satellite in low Earth orbit
shows subtle yet significant alterations compared to its initial path. Atmospheric drag, being the
second-largest perturbation after J2 (Earth’s oblateness), exerts a continuous decelerating force
on the satellite. This force gradually lowers the satellite's altitude and modifies its orbital shape
over time. On an orbital plot, these changes might not be immediately evident due to their
gradual nature. The satellite's orbit might appear nearly identical to the original path on a
short-term scale, but over extended periods, the plot reveals a noticeable trend of decreasing
altitude and increased orbital decay. While the effects are more pronounced than third-body
perturbations, they are less dramatic than those caused by J2, requiring careful analysis to
understand their full impact on the satellite's long-term trajectory and mission planning.
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Figure 9: Orbital Plot w/ Third Body Perturbations

The graph illustrates the positional errors in the X, Y, and Z dimensions of a satellite's
orbit over time due to atmospheric drag, showing a periodic pattern with generally lower
magnitudes compared to the J2 effect. The X Error Drag (blue line) displays the most significant
variations, peaking above 200 km, followed by the Y Error Drag (orange line), while the Z Error
Drag (green line) is the smallest. The periodic peaks indicate the influence of orbital
characteristics and the satellite's interaction with varying atmospheric density. These errors
underscore the importance of accounting for atmospheric drag in orbital mechanics to predict
orbital decay and ensure precise satellite navigation, necessitating adjustments to maintain the
desired orbit and optimize satellite operations.

Discussion

In the study of orbital mechanics, understanding the various forces and perturbations that
influence the trajectories of satellites is crucial for precise modeling and prediction. The primary
two-body problem, which simplifies the dynamics of interactions between a satellite and a
central body like Earth, serves as a foundational framework. However, real-world orbital
calculations require a more nuanced approach that incorporates additional perturbative forces.
These perturbations arise from a variety of sources, including the non-uniform distribution of
Earth's mass, interactions with the Earth's atmosphere, and gravitational influences from other
celestial bodies such as the Moon and the Sun. Each of these factors plays a role in altering the
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orbit of a satellite, affecting its position, velocity, and trajectory over time. As these perturbations
accumulate, they can lead to significant deviations from the predicted orbital path, impacting
satellite operations and mission outcomes. Accurately modeling these influences is essential for
a range of applications, from maintaining the precise alignment of satellite constellations to
supporting scientific research and ensuring the reliability of global positioning systems. In this
context, it is important to explore the various perturbative effects in detail, understanding their
individual contributions and the ways they can be incorporated into predictive models to
enhance accuracy and reliability in orbital mechanics.

The following figures illustrate the impact of various perturbative forces on a satellite's
orbit over time. The top two images provide a three-dimensional view of the satellite's base orbit
(left) and the orbit including all perturbative effects (right), highlighting the deviations introduced
by these perturbations. The bottom graph presents the positional errors in the satellite's X, Y,
and Z coordinates due to different perturbative effects, including atmospheric drag, Earth's
oblateness (J2 effect), and additional forces, over a period of time. The error magnitudes are
shown in kilometers, plotted against time in seconds, to demonstrate how these forces affect the
satellite's trajectory cumulatively. By comparing the base orbit with the perturbed orbit and
analyzing the error trends, the figures collectively emphasize the significance of accurately
accounting for these perturbations in orbital mechanics for precise satellite navigation and
mission planning.

Figure 10: Orbital Plot w/ No Perturbations (Base Orbit)
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Figure 11: Orbital Plot w/ All Perturbations

Figure 12: Error vs Time Plot of All Perturbations
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Graph from Methods of Celestial Mechanics by G. Beulter
Figure 13: Accelerations acting upon LEOs (Low-Earth Orbits)

The comparison chart above, provided by Methods of Celestial Mechanics by G. Beutler, labels
the most significant perturbation on Low Earth Orbits as Earth oblateness. Earth oblateness is
followed by atmospheric drag, the R^2 term, lunar attraction, solar attraction, etc. Looking from
afar via comparison plots and seeing the significance in numbers, it seems that these
perturbations have a small impact on orbits over time. Although these perturbations don’t
provide a vast impact, it is still important when modeling/measuring precise calculations in
orbital mechanics. To improve the results, it would be necessary to take into account direct solar
radiation pressure and other perturbations to perfectly predict orbits. In the chart above, Earth’s
oblateness (the J2 effect) has the most significant impact, causing gradual precession of the
orbit and affecting key orbital elements. Atmospheric drag, the second most significant
perturbation, leads to altitude decay due to friction with atmospheric particles, particularly
affecting low Earth orbits (LEO). Gravitational forces from the Moon and the Sun also influence
satellite orbits, causing long-term changes in the semi-major axis, eccentricity, and inclination,
although their effects are less pronounced than those of Earth’s oblateness and atmospheric
drag. Despite the seeming minor individual impacts, these perturbations accumulate over time,
resulting in significant deviations from intended orbits, which is crucial for precise applications
like GPS and scientific missions. Improving orbit prediction accuracy requires accounting for
additional forces, such as direct solar radiation pressure, using sophisticated atmospheric
density models, and integrating real-time data. By incorporating higher-order gravitational
models and considering relativistic effects, predictions can be further refined. Continuously
enhancing models to include a wider range of perturbative effects will enable more precise and
reliable satellite trajectory predictions.
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Conclusion

The work conducted on modeling the long-term stability of artificial satellites in
non-equatorial orbits is crucial for ensuring the success and longevity of space missions. By
understanding and quantifying the effects of various perturbations, such as Earth’s oblateness,
atmospheric drag, and lunar and solar gravitational forces, deviations from intended orbits can
be predicted and mitigated. Results showed that Earth’s oblateness had the most significant
impact, causing orbital precession, while atmospheric drag led to altitude decay, particularly for
low Earth orbits. Lunar and solar perturbations, although less pronounced, also contributed to
long-term changes in the satellite's trajectory. Additionally, the data and conclusions from the
study align with a chart from Methods of Celestial Mechanics by G. Beutler, further verifying the
results. These findings underscore the importance of incorporating a wide range of perturbative
effects in orbital mechanics models. The insights gained from this project highlight the necessity
of using advanced models and real-time data to refine predictions and ensure satellites' precise
and stable operation. By continuously improving the understanding and modeling of these
perturbations, the reliability and effectiveness of satellite missions, which are integral to space
exploration, communication, navigation, and Earth observation, are enhanced.

24


