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Abstract—In basketball, the efficiency of shot-making is crucial for success, especially in
high-stakes games. Traditional self-training methods face significant challenges due to the
absence of training equipment and personalized coaching. This paper presents an approach
using computer vision and deep learning algorithms to provide feedback to players towards
optimizing basketball shot trajectories, offering a solution for self-training. We employ image
segmentation to accurately track the basketball and analyze shooting videos, enabling the
extraction of critical parameters such as the release angle and shot trajectory. Our methodology
integrates a Faster R-CNN model for object detection and introduces two novel parabolic
curve fitting techniques: Bounce-Around and Sliding Window Sampling Consensus (SWISAC).
These techniques allow for precise trajectory analysis and on-or-off-course predictions, despite
occlusions by the net. Experimental results demonstrate the efficacy of our approach in
providing actionable feedback for improving shooting accuracy. This research lays the
groundwork for future advancements in automated sports analytics, enhancing and
democratizing the training and performance feedback of basketball players.

Index Terms—intelligent feedback systems, sports analytics, object tracking, human-computer
interaction, basketball

I. INTRODUCTION
The game of basketball is a highly competitive sport with a massive worldwide fan base. This
sport requires various skills such as dribbling, passing, and rebounding, culminating in
successful basketball scoring. The outcome of most high-level
games is determined by the team that shoots the basketball more efficiently. While basketball
requires a great level of teamwork and coordination, individual shooting skills are extremely
crucial to achieving success. Insufficient shooting abilities can expose many basketball teams’
weaknesses and can ultimately reduce chances for team success. Therefore, shooting
efficiently in basketball plays a key role in securing wins. Intense and repeated self-training is
needed to improve basketball shooting abilities. However, self-training poses a challenge in that
it is not easy to analyze one’s own basketball shooting method and identify adjustments to be
made. It is also not feasible for every basketball player to have an individual coach [1]. These
obstacles can be effectively countered by having technology tools that provide
recommendations for improving basketball scoring techniques. These tools have computer
vision and image processing at their core. Computer vision algorithms and deep learning have
been utilized to develop image segmentation techniques, addressing Fig. 1. We used an R-CNN
pre-trained model to detect the ball right before it enters the basket. We utilize Mediapipe to
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detect the pose and hand features to ensure bodily features are not considered as the
basketball. real-world problems like pose detection [2]–[4] and object detection [5]. Despite their
numerous uses, deep learning algorithms have some disadvantages. Deep learning, for
instance, requires higher computing power and extensive datasets to complete even simple
image segmentation tasks. Image segmentation is a key tool for our research purposes since it
enables precise identification of the region containing the target object and facilitates an
accurate estimation of the target object’s center, a common complexity of object representation
[6]. Image segmentation applied to a sequence of individual video frames plays a pivotal role in
analyzing and tracking the trajectory of objects in dynamic environments [7], [8]. By isolating
only the target object, image segmentation techniques can minimize unnecessary elements and
better depict an object’s trajectory. In this paper, we determine the trajectory of a basketball by
analyzing the shooting videos using computer vision, image segmentation, and data analysis
techniques. Using this information, we create an algorithm to estimate whether a shot is a
on-course or off-course, for the purpose of providing feedback on the shot angle. However, we
find that state-of-the-art object detection methods are only able to detect the basketball up until
the point where the ball becomes occluded by the net. While we can still determine a parabola
of the projected motion of the ball, due to the unpredictability of interactions between the ball
and the rim, we make the case for future research in the detection of the basketball through Fig.
2. State-of-the-art algorithms were unable to detect the basketball while in the net. Having this
advanced capability would assist in estimating whether the shot was a make or a miss net
occlusion.
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II. RELATED RESEARCH
Computer vision and deep learning algorithms have been utilized to develop effective
segmentation techniques [9], addressing real-world problems like pose detection [10] and
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object detection [11]. Similar techniques have also been applied for sports analysis, with
relevant examples for basketball feedback provided in this section. In [12], a 3x3 red median
filter is used along with binarization and area expansion to identify the red ball and shirt that
the player is wearing. The centroids of the player’s posture and the basketball are identified by
detecting the basketball and the player’s t-shirt. Using the centroids and the given height of the
person, the optimal shooting angle is predicted. The basketball trajectory is estimated using
starting angle and refined using a Kalman filter. In this paper, we also determine an optimum
shooting angle as in [12] using an alternate predicted on-or-off course algorithm at the rim to
enable the method to work for any player’s height while accounting for key factors such as
the rim or the backboard affecting the ball’s trajectory. [13] studies the postural attributes such
as leg bending, stomping, ball lifting, elbow lifting, and arm stretching upward as in [12] and then
identifies correlations between these postural attributes and the shot result (make or miss). This
approach is currently limited to free throws and does not provide a path to extend it for other
shooting poses on the basketball court. Instead, the focus of our approach is recognition of
the basketball and the rim and works on extrapolating the basketball trajectory. Our approach is
shown to also recognize the basketball and rim when shooting from different court locations and
different angles of recording videos but narrows down to summarize one-or-off course algorithm
only for free throws. [14] proposes a dual-core extreme learning machine (ELM) combined with
deep learning for motion recognition, which is evaluated on large-scale and real-world datasets.
It uses a combination of deep learning methods to recognize and analyze basketball shooting
angles. We address a similar task Fig. 3. The orange bounding box is used to detect the rim. In
this frame, the algorithm detects both the rim as well as a clock to be the rim, a common
outlier we encountered. in our research, and further include a mechanism for feedback and
self-coaching, particularly leveraging pre-trained models to recognize the rim to assess shot
trajectory targets.

III. METHODOLOGIES
In this paper, we first determine the trajectory of the basketball by analyzing the shot-making
videos using computer vision and image segmentation techniques. We developed two
parabolic curve fitting mechanisms, one consisting of forward and backward iterations on the
ball’s trajectory from its apex point and another consisting of a sliding window through the
time series of basketball detection. Both methods are used to identify two critical aspects at the
endpoints of the arc of a basketball shot, which are the release angle and the point before the
ball hits the basket. This information is used in providing on- or off-course predictions and
calculating release angles. The algorithm’s prediction is able to run independently for each
person, so that it adjusts to the appropriate angle for any player’s height.
A. Object Detection - To detect the basketball and rim in a given frame, we used pre-trained
Faster R-CNN model [15], trained on the Common Objects in Context (COCO) dataset [16].
Within each frame, we obtained the ball and rim class labels, bounding boxes for the two
classes, and their confidence scores. We configured the ball and rim detection filter for a
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confidence threshold of 0.5. There were false positives when identifying both the ball as well as
the rim. The subsequent sections describes the algorithm we developed to filter out such false
ball or rim detection. In each frame, we store the coordinates of the bounding box around the
ball and the rim as well as the ball’s center position in a data frame for further processing.
B. Filtering Out False Positives
Initially, the test videos were taken in an outdoor setting, where a player’s head was the only
object that was found to create a false positive. There were no false positives for rim
detection outdoors. We observe that once the basketball has left the player’s hand in a
shot-making process, the basketball is always higher in the subsequent frames. This fact was
used to develop the filter to remove false positives. In every subsequent frame, whenever more
than one ball is detected, we save the ball position coordinate that was closer to the ball position
coordinate from the previous frame while considering the outlier ball detection as extraneous
coordinates. When conducting test videos in an indoor setting, there were false positives other
than the player’s head for both ball and rim detection. To ensure that false positives were filtered
in both indoor and outdoor settings, we refined the algorithm to retain the coordinates for both
the ball and the rim which was closer to the previous frame’s ball and rim position coordinates. It
is imperative that the ball and the rim are detected accurately in the first frame to prevent future
outliers, and the confidence threshold of 0.5 worked sufficiently for our task.
C. Parabola Curve Fitting
1) Bounce-Around Method: When a basketball is released from a player’s hand, it travels under
the influence of gravity, following a parabolic path. Under these assumptions, the only factors
that alter the ball’s trajectory are interactions with the backboard, rim, or net. To determine the
trajectory of a basketball, we can fit a curve to the ball’s path using its position coordinates. We
first identified the apex point of the ball’s trajectory as the highest y-coordinate of the ball
position coordinates, and curve fit a parabola using one point on either side of the apex (3 points
total).
The, a, b, and c coefficients of the quadratic fit curve were extracted and stored.

This parabola does not depict the full trajectory of the ball. To replicate the full path of the ball,
we found two endpoints, the start endpoint, which signifies the moment the ball leaves the
player’s hand and the final endpoint, which is when the ball is about to come into contact with
the rim or backboard. To do this, we took one point on either side of the apex point of the curve
fit parabola and continued to iteratively do this until the proportion of variance (R2) values on
both the left and right side became less than 0.99. These two points on the left and right side
were considered the endpoints of the ball’s trajectory in the air. The start endpoint was
considered as the point where the player releases the ball from the hand and the final endpoint
as when it is about to interact with the hoop.
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2∑(yi − y)2
(1)
We then curve fit a final parabola using all the ball coordinate points between these two
endpoints and saved the coefficients. This method allows us to determine an accurate
representation of the ball’s path but does not account for any noise in the video or detections.
2) Sliding Window Sampling Consensus (SWISAC): The second method employed to achieve
an optimal parabola fitting utilized a variant of the RANSAC (Random Sample Consen-
sus) regression model with a sliding window instead of random selection. Our approach, which
we name SWISAC, involves using a sliding window of five ball position coordinates to fit
a parabola. Starting with the first ball position, the method selects the initial five points to curve
fit a parabola. The window then moves to the next ball position and repeats the process for the
subsequent sets of coordinates until the end of the time series of detections is reached. For
every set of five ball position coordinates, we calculated the R2 value, as shown in the graph in
Figure 5. We then identify the longest set of contiguous windows that had R2 values
consistently over 0.97 while still allowing for a certain number of windows to have R2 values
lower than the 0.97 threshold (tolerance value = 3). This segment represents the trajectory of
the ball while it is in the air. To fit the resultant parabola, we took the sliding window’s maximum
R2 value parabola and used this parameterization, storing the coefficients a, b, and c of this
resultant parabola.
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D. On-or-Off-Course Algorithm
Make or miss algorithms rely on ball detection while it is in the hoop. As a substitute, we extend
the curve fit parabola and project 5 different points and determine the ball’s trajectory was
on-course or off-course in entering the rim for algorithmic purposes.

1) Define n (n = 5, tunable parameter) y coordinates points between the top and bottom of the
rim
2) Using these n y-coordinates, predict the 5 x-coordinates from the parabola curve fit equation
and store them
3) If at least m (1, tunable) points fall within the rim rectangle boundary, the shot is considered a
make, otherwise a miss

E. Angle Detection
Utilizing the ball trajectory parabola’s coefficients, we defined a derivative function to calculate
the angle at the first ball position coordinate of the curve fit parabola. The derivative for any
given parabola is in the form
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and converted into radians and degrees. After calculating the angle in degrees, we drew a line
with length 50 through the first ball position coordinate to visualize the angle and the position it
was calculated with. Figure 4 shows the final plot with real, predicted on-or-off course basketball
trajectory, and angle of release. For each parabola graph shown in the previous sections, the
orange line represents a line that shows the angle for that particular video.

IV. EXPERIMENTAL EVALUATION
Data was collected from various shooting locations, and recorded at different angles for the
same shot location. Outdoor basketball shots did not face significant issues, since there were
fewer external objects. Indoor shots faced challenges with extraneous items on the wall (e.g.,
clock, fire alarm) being misconstrued as the basketball or rim, and passersby i interfering with
the shot. To recognize our algorithm’s effectiveness, we took the ground truth of the shot (make
vs miss) and the predicted output of the ball (on-course or off-course) from free-throw line shots
and stored the data. Our model was able to predict correctly 66 percent of the real-time
free-throw line shots using Bounce-Around parabolic curve fitting and our estimated
make-or-miss algorithm. For the SWISAC parabolic curve fitting, our make-or-miss algorithm
predicted correctly 68 percent of real-time free-throw line shots.

1) Video Specifications: Every video that our model evaluated was shot on an iPhone at 60 fps
which resulted in our model processing 60 frames per second. We collected 58 total
videos of basketball shots with 34 of the shots being from the free-throw line. 25 of the shots
from the free-throw line were indoors. An orange indoor basketball was used indoors while a
green ball was used outdoors to eliminate similarity. Every video we analyzed had single-player
shots rather than multi-player shots to ensure that our model only tracked one basketball.

2) Processing: We processed all frames without skipping any to ensure comprehensive
analysis. We tested both the Bounce-Around method and the SWISAC method for every
free-throw video taken. For every output frame, we stored the output for the ball, rim, hand, and
rim’s coordinates along with the final trajectory plots in an output file. In the output file, we
included predictions (On-Course or Off-Course) as well as the unique shooting angles for
different shots. The plots of the shooting angles are intended to provide visualized
recommendations for altering shooting angles appropriately. We provide angles and plots for
both the Bounce-Around method and the SWISAC method. We processed 30 free-throw videos
for the Bounce-Around method (Table 1) and 22 free-throw videos using the SWISAC method
(Table 2).
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A. Experiment Results and Feedback Mechanism All the free-throw line basketball shots are
stored with important details about the shot information. The video name, shooting location
(indoor or outdoors), video angle (the spot on the court), court location (right or left), On-or-Off
course prediction, and shooting angle are stored. We take the median
angle from our algorithm’s predicted on-course shots and store it. If the user shoots with an
angle higher than this, a lower shooting arc would be suggested to the user. Vice versa, if the
user shot with a lower angle than the median angle, a higher arc would be suggested. For
example, for free-throw line shots using the Bounce-Around method, the optimum angle our
algorithm suggests for the player shown in Figure 1 52.3°. For free-throw line shots using the
SWISAC method, the optimum angle suggested is 55.6°. The consistency of angles between
both methods is an encouraging feature of these approaches.

V. CONCLUDING REMARKS AND FUTURE RESEARCH
This paper presents an approach utilizing computer vision and deep learning algorithms to
provide actionable feedback for optimizing basketball shot trajectories, offering a robust
solution for self-training. By employing image segmentation, we accurately track the basketball
and analyze shooting videos, enabling the extraction of critical parameters such as release
angle and shot trajectory. Our methodology integrates a Faster R-CNN model for object
detection and introduces two novel parabolic curve fitting techniques: Bounce-Around and
Sliding Window Sampling Consensus (SWISAC). These techniques allow for precise trajectory
analysis and on-or-off-course predictions, even in cases of occlusion by the net. Experimental
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results demonstrate the efficacy of our approach in improving shooting accuracy. We also lay
the groundwork for a feedback mechanism that provides automated suggestions to players
based on the median shooting angle vs the angle they shot at. Towards future research, our
make-or-miss algorithm relies on detecting the basketball while it is in the net, which is a current
occlusion challenge for object detectors. We hope to further research that enables
state-of-the-art object detection mechanisms to detect the ball while in the net for our make or
miss algorithm to return feedback not only on trajectory but also on shot success. Using active
learning techniques [17]–[21] may assist in identifying challenging examples for annotation and
learning, allowing for the training of detection models which are robust to occlusion and
providing a consistent and useful analysis of a player’s shot for self-coaching.
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