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Abstract
This paper addresses the enhancement of automated chess recognition systems,

focusing on overcoming challenges such as poor lighting, diverse camera angles, and varying
chess set designs. Through the use of cutting-edge convolutional neural networks (CNNs)
trained on diverse datasets, this study employs advanced image processing techniques
including edge, corner, and line detection algorithms, along with the RANSAC algorithm for
robust corner identification. Pretrained CNN models are used for classifying board occupancy
and piece types. The methods significantly improve system accuracy under controlled
conditions, demonstrating high success rates in LED lighting on homogeneous surfaces.
However, performance is still affected by extreme lighting variations, unconventional chess sets,
non-standard camera angles, and glare reflected by the chessboard. The study presents
promising advancements, highlighting the potential for further improvements to enhance
universal applicability and robustness in real-world scenarios.
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Introduction
By revolutionizing an ancient game, chess recognition systems have emerged as a

remarkable application of modern technology. Since its inception in the 6th century, chess has
captivated players worldwide, demanding quick thinking and strategic moves (Chess History,
2021). Traditionally, players recorded their moves for later analysis, a process often burdened
by the manual entry of data into computers or notebooks. However, the invention of chess
recognition systems has brought newfound convenience and accessibility to this old game.

Despite the existence of chess recognition systems, their accuracy has been a subject of
consideration, especially regarding challenging conditions such as poor lighting, camera quality,
and various camera angles. To overcome these obstacles, cutting-edge convolutional neural
networks (CNNs) are now employed, and trained on diverse datasets comprising of
chessboards captured from unique camera angles and varying conditions. As a result, these
systems can promptly display an 8 by 8 grid on the screen, representing the board and its
pieces in real-time, increasing user convenience. However, most of these systems do not
perform well under certain circumstances such as using different types of chess board pieces
than what the CNN has been trained on, or even the conditions of the camera and lighting.

This research paper discusses chess recognition systems, focusing on how they combine
traditional gameplay with modern technology. It examines the challenges faced by previous
models and highlights the improvements made possible through convolutional neural networks
(CNNs) and intelligent move timers. The main goal of this study is to contribute to the field of
automated chess recognition, by testing and modifying machine learning and recognition
algorithms to find flaws and inaccuracies due to various experimental conditions. As a result,
chess enthusiasts can enjoy a more accurate and enjoyable gaming experience.
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Related Works
Can Koray, Emre Sumer, and Vitomir Štruc, associate professors from Başkent University

in Turkey, created a chess recognition system using a chessboard’s geometric shape to easily
recognize the corners and grid lines on the board. The geometric rectification warps a tilted
board to fit perfectly based on its corner points’ coordinates. Their system takes a small region
of interest (ROI) on each piece, capturing its color properties and averages it with the other
occupied/colored squares of the same type (all the empty white squares, all the squares with
black pieces, etc.). Due to their heavy dependance on the colors of the ROI, one of their
limitations is that shadows across the board, such as the players’ hands, can end up skewing
the results. In addition, since the reference colors of the pieces are captured at the start of the
game, if there is a drastic change in the lighting conditions the system will be unable to detect
the pieces. However, in normal lighting, 162 out of 164 moves were properly recognized by the
system, showing a 98.7% accuracy rate (Koray & Sumer, 2016).

Additionally, Georg Wölflein & Ognjen Arandjelovic from the University of St. Andrews
School of Computer Science created an automated chess recognition system to assist users in
their games (Wölflein & Arandjelović, 2021). The chess recognition system works by recognizing
the board position and the piece’s color and identity. Due to a chessboard always being an 8 by
8 square figure, computer vision techniques, such as the Canny edge detector, are used to
distinguish the edges of the board and the lines between them. Next, the use of convolutional
neural networks (CNNs) is needed to decide if a square is empty or occupied by a piece. If there
is a piece on a square, then a separate CNN will analyze it to determine which piece and color it
is. Their approach is successful with the datasets used to test the system out, seeing a 99.77%
accuracy rate for successful piece recognition. However, when testing it out by submitting
self-taken images of chessboards, many limitations were present, such as it not being able to
distinguish between certain pieces, lighting conditions altering the results, and using a non-ariel
camera angle. The recognition system uses Forsyth–Edwards Notation (FEN), a universally
standardized chess notation to describe a board state, using alphabetical values for pieces
(Berent, 2019). Lowercase represents black pieces, while uppercase represents white pieces.

Methods
In order to conduct a thorough analysis of the chessboard, a series of computational

functions are applied. This process involves utilizing edge detection, corner detection, and line
detection algorithms to enable the camera to identify and define key properties of a chessboard,
and the positions of the pieces within the standard 8 by 8 grid. The algorithms used in this
research study were inspired from the open-source code of Georg Wölflein, available on Github
and mentioned in his research paper (Wölflein, 2021) & (Wölflein & Arandjelović, 2021).

The corner detector algorithm works by initially resizing the image and converting it to
grayscale: a black and white image where each pixel represents only an amount of light
(Christensson, 2011). Subsequently, the _detect_edges_ and the _detect_lines_ functions are
called to classify the lines as either horizontal or vertical. These functions work by verifying the
image format and then applying a Canny edge detection technique. Canny edge detection
works by smoothing out an image and finds areas of brightness changes to be able to sort out
clear edges (Wang et al., 2017). Next, it selects the strongest (most distinguishable) out of the
potential edges and isolates only those definite edges.
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Furthermore, redundant lines are eliminated, and intersection points are determined
using the _get_intersection_points function. This function analyzes information regarding the
horizontal and vertical lines within an image, calculating the distance and angular values for
each set of lines it detects. By generating a grid of possible combinations based on these
values, the function then uses trigonometric calculations to find the intersection points between
the vertical and horizontal lines, finally returning an array of these intersecting points.

In addition, the RANSAC (Random Sample Consensus) algorithm is used to identify a set
of corner points that best represent the entirety of the chessboard, filtering out the outliers
(Angst, 2014). RANSAC iterates through randomly chosen lines (from the edge and line
detectors), hence the name, to continue refining its data. The iterative process continues until
either 200 cycles are completed, or at least 30 inliers have been found. (Koray & Sumer, 2016).

Next, an occupancy classifier is utilized to determine whether each square on the
chessboard contains a piece or not. The _classify_occupancy function takes in the image of the
chessboard, its corner points, and information regarding the current player’s turn. After warping
the board’s image based on the corner points, the function iterates through all 64 squares,
extracting and processing an image of each one. Additionally, the function uses a pretrained
model from Wölflein’s provided GitHub directory, called _occupancy_model, to predict the
occupancy status of each square, ultimately returning an array indicating the occupancy of each
square (Wölflein, 2021).

In cases where a piece is detected on a square, the _classify_pieces function is used in
order to determine its color and piece type (ie. black rook, white pawn). This function predicts
the chessboard state using the four corners of the board, along with the occupancy and piece
type of each square. If a piece is present, the function uses a pretrained model called
_pieces_model, also based on Wölflein’s GitHub documentation, to predict the type of piece
(Wölflein, 2021). Finally, the function maps out the entire board, identifying the total number and
position of pieces, which are returned as an array.

Results and Challenges
After several attempts of running the program with various angles and lighting, the results

produced were diverse. In certain situations, the program successfully recognized the edges,
borders, and corners of the chessboard. However, there are several reasons that cause the
program to display skewed results. It is also important to keep in mind that these were tested on
one type of chessboard, and may not hold true to every type in existence due to the vast variety.
The chessboard configuration in these images is kept constant to ensure an accurate
comparison. The position is Samuel Loyd’s stalemate with all the pieces on the board. This is
beneficial in testing the accuracy of piece detection functions, given that they have a larger
dataset to run upon.

One of the impacting factors is the lighting of the image, the angle of that lighting and
shadows it creates on the board. For instance, with a strong overhead lighting there are less
shadows, so the results are expected to be more precise. However, in actuality, the ariel lighting
was reflected off the chessboard, and the program detected it as a cluster of potential edges, as
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seen in Figure 1. Consequently, the system was unable to render a proper layout of the
chessboard, and instead raised an error.

In comparison, when there is a light source from the side, strong shadows are casted
from the pieces onto the chessboard, creating a misinterpretation in the image. Interestingly, the
edge and board detection of a side-lit board, as shown in Figure 2, was very similar to that of the
aerial-lit board. This suggests that the lighting angle and shadows are not as responsible for the
reflection effects caused by the light compared to the glare.

Figure 1: Arial White Lighting

Figure 2: White Side-Angled Lighting
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In continuation, most scenarios are made assuming the player is playing in a traditional
white/yellow lighted area, but for those playing in LED/multicolored lights, the efficacy of the
system differs. The image in Figure 3 demonstrates this under a purple LED lighting. One
benefit that was found through testing multi-colored lights is the reduction of glare and light
reflection from the chessboard, ultimately assisting the detector in locating edges on the board.
Consequently, the board state was recognized by the algorithm, and it was able to give a FEN
representation of the status. However, many of the black pieces on black squares were not
noticed due to the dim lighting, portraying a key limitation of the system. Although the system
test was effective under purple lighting, there are millions of color combinations that could be
made, requiring further testing to be done before making a generalized claim.

Figure 3: Arial Purple LED Lighting

Moreover, the board that was used to test the system had years of use, resulting in
scratches and wood marks on it. The recognition systems detected them as edges in the model,
lowering the accuracy of the given outputs. Extra lines are very problematic in machine imaging,
as they are picked up by the edge and corner detectors and cause misinterpretations in the
overall processing of the image. In certain cases the background of the image can alter the
results as well. For instance, when the chessboard is on a carpeted surface, as seen in Figure
4, the carpet strands are mislabeled as chessboard edges, rendering the whole image useless.
Users of the chess recognition program are not always going to be playing on an even and
homogenous surface, highlighting a key limitation in the universality of the chess recognition
system.
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Figure 4: Arial White Lighting on Carpet

To add on, when a camera positon is non-arial, the recognition system is still generally
effective in detecting board edges, corners, and piece outline. While Figures 5 and 6 depict the
struggles accidental carpet corner detection, their piece detection rates are much higher than
the previous datasets. This is due to a lack of glare caused from an arial-lighting reflection by
the chessboard.

Figure 5: Non-Arial Yellow Lighting on Carpet
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Figure 6: Non-Arial White Lighting on Carpet

Lastly, to ensure the theory that glare from lighting is the most culpable factor in skewing
detection rates, a photo of a chess board was taken from an arial angle in yellow lighting, but
with no direct glare on the board. As seen in Figure 7, the hypothesis was proven correct, as a
significant amount of the pieces are accurately identified, and there are no external lines being
detected by the canny edge detector. The detection software was also able to create an FEN
diagram of the pieces it detected based on the board’s state in Figure 8. In Figure 9, a visual
representation of the FEN model is shown to simplify the results in a way that could be used as
a UI for real-world integrations of the chess recognition system. Although the recognition
software was not able to produce a high-accuracy representation of the chessboard state, it is
still an achievement for it to be able to outline and attempt to predict the occupancy status, as
compared to previous attempts. While the _classify_pieces and _classify_occupancy functions
could definitely be improved, the successful board, edge, and piece detection proves that glare
and heterogeneous surfaces were the most detrimental factors impacting the software.

Figure 7: Arial Yellow Lighting with no Glare
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Figure 8: Detector-Produced FEN sequence Figure 9: Visual Representation of FEN

The most common error that was produced by the recognition system was that the
chessboard could not be located due to an excess amount of lines detected, as displayed by
Figure 10. This accurately reflects the visual observations, as instances with numerous false
lines detected did not produce a clear FEN visual, whereas those without such issues were
successful in doing so (see Figures 3 and 7).

Figure 10: Exception raised due to “too many lines in the image”

Due to the global popularity of chess, there are thousands of variations of pieces and
boards, all having the same main components, but are differently represented. For instance,
Figure 11 and 12 show two very different chess sets. Both are interpretable by a human chess
player, but a computer will read them very differently, based on what types of pieces it was
previously trained on. The lack of universal usage of the chess recognition software is a
significant limitation, prohibiting millions of chess players from being able to benefit from it,
illustrating another potential aspect to improve on.
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Figure 11 Figure 12

Future Research and Applications
In addition to the research and results that were concluded, multiple features can be

added to the program to enhance its user interactions. One of these ideas is the integration of a
move timer in the chess recognition system. This innovative addition aims to revolutionize time
management by being able to detect when a player’s hand is on and off the piece. Unlike
conventional timers that allow for delays and inaccuracies, the proposed move timer works in
real-time to keep track of each players timing in the game, whereas it takes a few seconds of
delay for the player to hit the timer after making their move. The successful implementation of
the new algorithm heavily relies on a functioning occupancy classifier and piece detection
mechanism. These components must work together seamlessly to accurately identify when a
player is handling a piece. Future research will focus on refining these algorithms to ensure they
can reliably detect hand movements and piece interactions under various visual and physical
conditions, based on the styles of the chess pieces and the camera quality.

Additionally,the application of this technology could be expanded beyond traditional
chess games to include online and virtual chess platforms. This would involve adapting the
system to recognize and track digital representations of chess pieces and hand movements in a
virtual environment, which can be done building upon the current progress of the recognition
system. There could also be potential for a built in user interface so FEN notations can
automatically be converted and saved as standard chess pieces, increasing the convenience for
users.

Overall, these future enhancements have the potential to significantly improve the user
experience, making chess more engaging and fair. Continued research and development in
machine learning and artificial intelligence will be crucial in achieving these advancements and
ensuring their practical implementation.
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