
Hyperparameter Tuning Improves Computer Vision Tools for Wildlife Conservation
Achyut Venkatesh

Abstract
Camera traps are an excellent way to collect a large amount and variety of wildlife data;
however, the volume of images poses a serious challenge for manual analysis. Through the use
of machine learning and computer vision, this process can be automated, enabling rapid and
accurate classification and identification, thus aiding conservation efforts. This study explores
the effectiveness of EfficientNet models in classifying eight different classes from camera trap
images, focusing on how hyperparameters such as learning rate and batch size affect model
performance. Using a dataset of 16,487 images from Tai National Park, we experimented with
different hyperparameter values and found that a lower learning rate and a moderate batch size
yielded the highest accuracy. The efficientnet_b1 model was the most effective model, achieving
86.27% accuracy with 20 epochs. It identified leopards, hogs, birds, and genet civets with over
90% accuracy but struggled with the blank class. Training was completed in under eight hours
on a single laptop, showcasing the efficiency of lightweight models. Our findings underscore the
potential of computer vision in conservation, enabling rapid and accurate analysis of large
datasets that would take large amounts of time and workers to go through manually. This work
highlights the importance of hyperparameter tuning in enhancing model performance, paving the
way for more effective automated wildlife monitoring tools.

Introduction
Camera traps are invaluable tools for conservation, providing non-invasive methods to monitor
wildlife populations and behaviors over large geographic areas and extended periods. These
devices can capture images of animals in their natural habitats without human interference,
offering crucial data for ecological research and conservation planning. However, the sheer
volume of images generated by camera traps presents a significant challenge for manual
analysis.

Machine learning (ML) and computer vision present a solution to this challenge. These
technologies allow for the data analysis to be automated, significantly reducing the time and
effort required to comb through the data. They allow for tasks such as classification and
identification to be completed at astonishing speeds. By using ML models, conservationists can
process large datasets quickly and accurately, gaining insights that inform conservation
strategies and policy decisions.

Several studies have already demonstrated the effectiveness of ML in conservation efforts. One
study utilized deep learning to classify 48 species from camera trap images, achieving high
accuracy and demonstrating the potential for large-scale automated wildlife monitoring
(Norouzzadeh et al., 2020). Another study developed a deep learning model to identify animal
species in camera trap images across diverse ecosystems, highlighting the generalizability of
these methods (Willi et al., 2018).

In this paper, we aim to evaluate how different hyperparameters affect the performance of a
computer vision model trained to classify camera trap images. Hyperparameters are predefined
settings in machine learning models, like learning rate, batch size, and the number of epochs,

1

that control the training process and significantly influence model performance. We focus on the
EfficientNet computer vision model architecture and assess the impact of varying the batch size
, learning rate, and epoch hyperparameters on the model’s training efficiency and accuracy. By
tuning these three hyperparameters and identifying the optimal values, we aim to maximize the
model’s performance in identifying animal species from a camera trap dataset. This work
contributes to the broader goal of enhancing automated wildlife monitoring tools, making them
more effective and accessible for conservation efforts worldwide.

Data
The data used for this project were camera trap images taken from various locations across the
Tai National Park in Côte d'Ivoire. These images were collected by the Wild Chimpanzee
Foundation and the Max Planck Institute for Evolutionary Anthropology from 2016 to 2018. The
dataset used had a total of 16,487 images split into 8 unique classes, each containing a different
species type. The 8 classes were the Duiker Antelope, Genet Civet, Hog, Leopard, Prosimian
Monkey, Rodent, Bird, and a blank class. Table 1 below shows a sample image from each class.

Duiker Antelope Genet Civet

Hog Leopard

Prosimian Monkey Rodent

2

Bird Blank

Table 1. Sample image of each class
Each class had 2,000+ images except for the hog class, which only had 979 images. This
discrepancy indicates that the hog class is underrepresented compared to the others. This
dataset presents several challenges while using lightweight models. First, the image isn’t always
centered and doesn’t contain the full animal. Oftentimes it will only contain a limb such as a leg
or a tail. Secondly, the animals aren’t in the same spot in each image. Some images will have
the animal in the center while others have it in a corner. There is also foliage and other
disruptors that are also captured in the camera trap image. Finally, the lightweight models used
in this study only operate with low-resolution images. Since the camera trap images are of a
higher resolution, they need to be coarsened to fit the model’s requirements, omitting
information that the model may have been able to utilize.

Methods
The computer vision models used were the EfficientNet machine learning models. The
EfficientNet architecture was first introduced by researchers at Google in 2019 and now consists
of numerous iterations. The EfficientNet model is a computer vision model based on
convolutional neural networks that allows for rapid training and quick results. A limitation of the
model, however, is that it can only handle input images that are small, under 250 pixels by 250
pixels. For this project, only EfficientNet models with parameters under 250 pixels by 250 pixels
were used and compared to ensure that the models had equal standing.

The primary model experiments we explored involved altering the EfficientNet hyperparameters.
Hyperparameters are predefined settings in machine learning models, like learning rate, batch

3

size, and the number of epochs, that control the training process and significantly influence
model performance. Tweaking hyperparameters is crucial in machine learning to optimize model
performance and ensure it generalizes well to new data. Additionally, proper parameter tuning
enhances training efficiency and stability, adapting the model to the specific characteristics of
the dataset. By finding the optimal parameters, the model can function at full capacity and
produce the best results.

The three hyperparameters that were experimented with in this project were the learning rate,
the batch size, and the number of epochs. The learning rate is a hyperparameter that
determines the size of the steps the model takes during optimization when updating the weights
based on the gradient of the loss function. A properly set learning rate ensures that the model
converges efficiently to a minimum of the loss function; if it's too high, the model might
overshoot the minimum, and if it's too low, the training process can become excessively slow or
get stuck in local minima. A higher learning rate would be expected to result in faster training
time but less accurate identification. In contrast, a lower learning rate would be expected to
result in a slower training time but more accurate identification.

The next main parameter experimented with in this project is batch size. Batch size is a
hyperparameter in machine learning that determines the number of training images processed
together before the model's internal parameters are updated. A smaller batch size provides
more frequent updates and can lead to more precise adjustments, while a larger batch size
results in faster computation per epoch and smoother gradient estimates but requires more
memory.

The final parameter in the EfficientNet architecture manipulated here is the number of epochs.
The number of epochs is a hyperparameter in machine learning that defines the number of
complete passes through the entire training dataset during the training process. Each epoch
allows the model to learn and update its parameters based on the entire dataset. A higher
number of epochs would result in a much longer training time but, typically, a more accurate
model. A lower number of epochs would result in a smaller training time but a less accurate
model.

Model Validation
First, the model was run with a batch size of 4 and increasing learning rates while keeping the
number of epochs constant. After the ideal learning rate was determined, that rate was kept
constant while the batch size was multiplied by four in each trial. Using this process, the most
effective learning rate and batch size were determined for the base model. Since the other
EfficientNet models were iterations of this base model, the same optimal parameters were
applied when conducting trials to determine the most effective model. Then, once the highest
performing model was identified, the epoch number was drastically increased until the accuracy
and loss displayed significantly diminished returns. This allowed for the best possible accuracy
and the lowest possible loss from the identified model configuration.

To determine the most accurate model with the most optimal parameters, a base model is
necessary. In this case, the efficientnet_b0 model was used as the base model to determine the
ideal parameter values. These values were then used in other experiments here with slight

4

model architecture variations, like the efficientnet_b1, efficientnetv2-b0, and efficientnetv2-b1
model architectures.

The model’s performance was judged by determining the percentage of images identified
correctly for each class and then averaging those values together. This effectively weights the
model performance on each class evenly. Another way that the models’ effectiveness was
quantified was through log loss.

To evaluate the accuracy and loss from the model, the trained model was applied to a separate
dataset that the model was not trained on. This dataset unseen during training, referred to as
the validation set, consists of 3,297 images. leaving 13,190 images available for training the
model. The model was not trained on this validation set and was only exposed to it when
evaluating the final percentages, accuracy, loss, and log loss.

Results

Fig. 1. These graphs represent how the accuracy and loss of the final model changed as the
number of epochs increased. We can see that the accuracy is increasing and the loss is
decreasing as the model trains.

The best-performing model was the efficientnet_b1 model which outperformed the
efficientnet_b0, efficientnetv2-b0, and efficientnetv2-b1 models (Table 2). The hyperparameters
leading to the highest performance were a learning rate of 0.005 and a batch size of 16. This
means that the lowest learning rate and a moderate batch size led to the most accurate results.
The models were all compared with 10 epochs, but once it was determined that efficientnet_b1
was the best model, it was run with 20 epochs to get the final percentage of 86.27%. It accepts
up to images of 240 pixels by 240 pixels. Figure 1 shows that the accuracy and loss have not
fully plateaued by epoch 20, suggesting that the model can be even more accurate at identifying
the classes with additional training.

5

These results indicate that a lower learning rate is optimal for the most accurate identification.
Although it takes longer to train the model, it overall leads to better results. These results also
indicate that a batch size that balances both time to train and accuracy is the most effective.

Training the model with 10 epochs required 3-4 hours computation time. Training the model with
20 epochs required upwards of 8 hours. This was expected and is still a reasonable amount of
time to train a model, as it can be done overnight.

Table 2. This table shows the experimentation process and the order in which the models and
hyperparameters were tested. It also demonstrates how the final hyperparameters (learning rate
of 0.005 and a batch size of 16) and model architecture (efficientnet_b1) were identified.

The model performed the best in the Leopard class with an accuracy of 97.38% on the held out
validation set images. This is most likely because of its easily identifiable pattern of spots that
can be seen on any part of the Leopard. This allows the model to easily identify the Leopard,
regardless of how much of the Leopard is shown in the image and where in the image it is
shown.

The model struggled with the Blank images the most. This could be because even though the
image does not contain an animal in it, there are still various features and foliage that are in the
image that the model could be overwhelmed by and assume that it is an animal.

Conclusions
We trained a series of EfficientNet models on a camera trap dataset to identify eight different
species, evaluating how different hyperparameter values for learning rate and batch size
influence performance. Our findings indicate that a lower learning rate with a moderate batch
size is the most effective for accurate identification. The model identified leopards, hogs, genet
civets, and birds well but struggled with the blank class.

We successfully trained the final model in under eight hours on a single laptop. This resulted in
a model that can accurately identify over 90% of images in four species classes. This efficiency
is impressive and suggests that with longer training, the performance could improve even further
(Fig. 1). This emphasizes that computer vision is a powerful tool for conservationists to analyze
massive datasets quickly and accurately. Our work demonstrates how tuning basic
hyperparameters can lead to dramatic improvements in accuracy (Table 2). With the optimal
values for learning rate and batch size, we significantly enhanced the model’s performance.

Limitations and Future Work

6

Although the model performed well, it struggled with certain classes. The class it had the most
difficulty with was the blank class. Future work could focus on improving classification accuracy
for these challenging categories by incorporating more advanced data preprocessing techniques
or exploring different model architectures.

Our results in Table 2 suggest that other models, besides our final one, have potential and may
be worth experimenting with further. Additionally, exploring other hyperparameters such as
dropout rates and weight decay could further enhance model performance.

One major limitation of the model is its potential variability in performance across different
regions or camera sites. Although it works well for camera traps in the Tai National Park, its
effectiveness in other environments is yet to be tested. Future studies could analyze the model’s
adaptability when it comes to different locations or environmental conditions.

In summary, our study demonstrates the vast potential that computer vision has in the wildlife
conservation field. Its ability to process and classify large camera trap datasets efficiently and
accurately makes it a significant asset to conservation work. However, poor selection of
hyperparameter values during training can lead to drastically underperforming models (Table 2).
Therefore by continuously refining hyperparameters and exploring new models, we can further
enhance the accuracy and applicability of these tools in conservation efforts.

Acknowledgments
We thank Google for providing notebooks for training the model and augmenting the data
available here:
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_i
mage_retraining.ipynb

References
[1] DrivenData. (n.d.). Conser-vision practice area: Image classification.

https://www.drivendata.org/competitions/87/competition-image-classification-wildlife-cons
ervation/page/409/

[2] Norouzzadeh, M. S., Morris, D., Beery, S., Joshi, N., Jojic, N., & Clune, J. (2020). A deep
active learning system for species identification and counting in camera trap images.
Methods in Ecology and Evolution, 12(1), 150–161.
https://doi.org/10.1111/2041-210x.13504

[3] Willi, M., Pitman, R. T., Cardoso, A. W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., &
Fortson, L. (2018). Identifying animal species in camera trap images using Deep
Learning and Citizen Science. Methods in Ecology and Evolution, 10(1), 80–91.
https://doi.org/10.1111/2041-210x.13099

7

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_image_retraining.ipynb#scrollTo=FlsEcKVeuCnf
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/hub/tutorials/tf2_image_retraining.ipynb#scrollTo=FlsEcKVeuCnf

