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Abstract 

Quantum computing promises an exponential speedup improvement in the time required to 

solve certain computational problems by leveraging the principles of quantum mechanics. While 

the potential power of quantum computers is well-established, their practical implementation 

poses significant challenges ranging from scalability to decoherence and noise. This paper 

presents QPy, a Python-based quantum circuit simulator that I programmed and designed to 

track the quantum state of a model quantum computer through the application of quantum gates 

to qubits. By performing the requisite matrix calculations, the simulator facilitates the 

understanding of quantum algorithms through the visualization of the underlying mathematics. 

This tool enables researchers to explore and implement various quantum protocols efficiently to 

test and build algorithms.  
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I. Introduction 

In the pursuit of solving computationally intensive problems, quantum computing has emerged 

as a promising platform. Unlike classical computers, which process information in binary bits in 

the form of 0s and 1s, quantum computers utilize quantum bits or qubits, which can exist in 

superposition states. Qubits also exploit the quantum property of entanglement. These unique 

features enable quantum computers to potentially solve certain problems faster than classical 

computers. 

 

However, harnessing the power of quantum computing requires overcoming formidable 

challenges. Quantum systems are inherently fragile, prone to errors caused by decoherence 

and noise. Moreover, designing and implementing quantum algorithms requires a deep 

understanding of quantum mechanics and complex mathematical operations. Simulating 

quantum systems on classical computers is exponentially resource-intensive, limiting the 

scalability of quantum algorithms and parallel computation. 

 

To address these challenges and facilitate the exploration of quantum algorithms, this project 

introduces a Python-based quantum circuit simulator. It enables researchers to simulate the 

behaviour of a model quantum computer by accurately tracking the quantum state as quantum 

gates are applied to qubits. By performing the necessary matrix calculations behind the scenes, 

the simulator provides a comprehensive view of the mathematical basis of quantum algorithms. 
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The primary goal of this research is to provide a versatile tool for understanding and 

implementing quantum protocols. By offering insights into the inner workings of quantum 

algorithms, QPy empowers researchers to explore novel quantum computing applications 

efficiently. Additionally, the simulator serves as a platform for testing and validating quantum 

algorithms in a controlled environment, paving the way for advancements in quantum computing 

research. 

 

II. Theoretical Foundations 

A. Quantum States 

A quantum state is a fundamental concept in quantum mechanics that describes the complete 

configuration of a quantum system. It represents the system's properties, such as position, 

momentum, energy, or other observable quantities. In quantum mechanics, a system's state is 

typically represented by a vector in a mathematical space called a Hilbert space [1].  

 

Quantum states possess the remarkable property of superposition, allowing them to exist as a 

linear combination of multiple basis states simultaneously, until measured. For instance, the 

spin state of an electron, the polarization state of a photon, or the collective state of multiple 

qubits within a quantum register are all examples of quantum states. 

 

B. Qubits 

In quantum computation, information is stored in the state of a qubit, the quantum generalization 

of a classical bit. They are fundamental units of quantum information, function analogous to 

classical bits but with added quantum properties. These properties enable qubits to represent 

not only |0⟩ or |1⟩ but also superpositions of these states. 

 

Physically, a qubit can be any two-level quantum system, such as electron spin or photon 

polarization. Their states are described by quantum state vectors, which can undergo evolution 

over time through quantum operations or interactions with other qubits.  

 

Qubits states are usually written as |0⟩ and |1⟩. These are bases which means that they form a 

linearly independent spanning set that spans Hilbert Space, implying that they are normalised [3].   

 

A general pure qubit state |𝜓⟩ is expressed as:  

|𝜓⟩  =  𝛼|0⟩  +  𝛽|1⟩ 

Where α and β are the complex probability amplitudes for each basic state. 

The amplitudes 𝛼, 𝛽 ∈ ℂ obey normalisation such that |𝛼|2  +  |𝛽|2 = 1.  

 

C. Quantum Superposition 

Vector |𝜓⟩ defined in the previous section is said to be in superposition. It can be said that such 

a superposed state is neither entirely |0⟩ nor entirely |1⟩. The amplitudes alpha and beta, are 
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directly related to the probabilities of measuring the state |𝜓⟩ in any qubit state, given by the Born 

rule [2]: |𝛼|2  +  |𝛽|2 = 1  

 

If a measurement is performed on the qubit state, the state collapses to a definite state of 

|0⟩ or |1⟩, returning a classical bit 0 or 1, with probability |𝛼|2 or |𝛽|2, respectively. However, 

between measurements, qubits can hold both values at the same time [4].  

 

D. Orthonormal basis 

A basis is a set of vectors that span a vector space, meaning any vector in that space can be 

expressed as a linear combination of the basis vectors. In quantum computing, the vector space 

of interest is the Hilbert space, which represents the possible states of a quantum system. A 

basis in the Hilbert space allows us to describe quantum states in terms of a set of fundamental 

states. 

An orthonormal basis is a special type of basis in which the basis vectors are both orthogonal 

and normalized. Orthogonal vectors are perpendicular to each other, meaning their inner 

product (or dot product) is zero. Normalized vectors have a magnitude of one, ensuring that 

each vector has unit length [3]. In the context of quantum computing, an orthonormal basis 

provides a convenient way to represent quantum states and perform calculations [14], as 

simplified below. 
 

⟨0|0⟩ = (1∗ 0∗) (
1
0

) =  ⟨1|1⟩ = (0∗ 1∗) (
0
1

) = 1 

⟨0|1⟩ = (1∗ 0∗) (
0
1

) =  ⟨1|0⟩ = (0∗ 1∗) (
1
0

) = 0 
 

In this way, we can represent any quantum state in 2D space using the |0⟩ and |1⟩ bases, 

through vector addition and scalar multiplication.  

 

Orthonormal bases are fundamental for representing qubits. Since qubits can exist in 

superpositions of states, we need a basis to describe these states. The two most commonly 

used bases in quantum computing are the computational basis and the Hadamard basis. 

 

1. Computational Basis: In the computational basis, the basis vectors correspond to the 

orthogonal states of a qubit: |0⟩ and |1⟩, forming the standard basis for representing 

qubits. 

 

2. Hadamard Basis: The Hadamard basis is derived from the Hadamard gate, a 

fundamental quantum gate used to create superpositions. The basis vectors in the 

Hadamard basis are |+⟩ and |−⟩, which are superpositions of the computational basis 

states |0⟩ and |1⟩. These vectors are also orthogonal to each other and form another 

orthonormal basis for qubits.  
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E. Quantum Entanglement 

Quantum entanglement is a key concept in quantum computing that occurs when particles 

become interconnected in such a way that the state of one particle is dependent on the state of 

another, regardless of the distance between them. This allows entangled qubits to share 

information instantaneously over vast distances, enhancing computational power of quantum 

computers by enabling complex calculations to be performed [4].  

 

F. Destruction and Projection measurement operations 

Destructive measurement refers to a process where information is gained about a quantum 

system by interacting with it in a way that destroys the original state of the system [5]. By 

measuring a qubit in a superposition state, since the value collapses to a definite state, 

information is altered irreversibly, due to the interaction required for measurement. 

 

Alternatively, projective measurement is a method in quantum mechanics used to determine the 

properties of a quantum system without destroying it [6]. In projective measurement, the system 

is observed in a way that allows specific properties to be determined accurately without altering 

the system's state. This type of measurement is crucial to understanding quantum systems 

while still preserving their original values. 

 

 

III. Design and Implementation 

QPy is a Python-based framework for simulating quantum states and mathematically 

representing quantum algorithms and vectors. The simulator makes use of a variety of pre-

defined quantum algorithms and mechanisms which will be explored in this section.  

 

A. Quantum Gates 

The simulator has been developed by encoding quantum gates in the form of mathematical 

matrices using python’s NumPy library in the gates module, which provides a set of common 

single- and multi-qubit quantum logic gates.  

 

Just as classical algorithms can be represented with a series of Boolean logic gates, quantum 

algorithms can be represented by quantum gates [7] that are used to manipulate states of 

quantum systems.  

 

Table 1 is a list of all the currently defined gates in the gates module of QPy. 

  

Table 1: List of all the currently defined gates in the simulator. 
 

Operation Name Definition Symbol 
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H Hadamard Gate 
𝐻 =  

1

√2
(

1 1
1 −1

) 

 
‘ 

X Pauli – X Gate 
 

 

𝜎𝑥 =  (
0 1
1 0

) 

 
. 

 
Y 

 
Pauli – Y Gate 

 

𝜎𝑦 =  (
0 −𝑖
𝑖 0

) 

 
 

. 

Z Pauli – Z Gate 𝜎𝑧 =  (
1 0
0 −1

) 

 

S Phase shift gate 
 
 
 
 

𝑅∅ =  (
1 0
0 𝑒𝑖∅) 

 

cnot Controlled-NOT 
Gate 

 
 
 
 

𝐶𝑁𝑂𝑇 =  (

1
0
0
0

0 0
1 0
0
0

0
1

0
0
1
0

) 

 

CZ Controlled Z 

𝐶𝑍 =  (

1
0
0
0

0 0
1 0
0
0

1
0

0
0
0

−1

) 

 

swap SWAP Gate 

𝑆𝑊𝐴𝑃 =  (

1
0
0
0

0 0
0 1
1
0

0
0

0
0
0
1

) 

  

Rx(theta) Rotation – X Gate 
 
 
 

 
 

𝑅𝑥(𝜃)  

=  (
cos (

𝜃

2
) −𝑖 sin (

𝜃

2
)

−𝑖 sin (
𝜃

2
) cos (

𝜃

2
)

) 
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Rz(theta) Rotation – Z Gate 𝑅𝑧(𝜃)  =  (
1 0
0 𝑒𝑖𝜃) 

 
 

Additional gates can be added through compositions of existing gates, making use of Kronecker 

and dot products to approximate an operator with arbitrary accuracy.  

 

Wires in a circuit denote tensor product by padding with identity matrices. To add and make use 

of gates, a function add_gate has been defined as well as a function apply_kron to implement 

the Kronecker product on multiple qubits at the same time.  

 

In order to apply a controlled gate across non-adjacent qubits, another function control_gate has 

been defined with the parameters: gate, control qubit, target qubit and the number of qubits. It 

pads the circuit with identity operators unless they are being operated on and is, therefore, 

effective while operating on circuits with a larger number of qubits.  

 

B. Limitations 

The quantum density matrix, in the context of quantum computing, is a mathematical tool used 

to describe the statistical properties of a quantum system composed of qubits. It represents the 

quantum state of a system, accounting for both pure states and mixed states. Pure states 

correspond to density matrices with rank one, representing a system in a definite quantum state. 

Mixed states, on the other hand, arise from a statistical mixture of multiple pure states and are 

represented by density matrices with rank greater than one. Density matrices are essential for 

characterizing the behaviour of quantum systems, particularly in the presence of noise and 

errors, and play a crucial role in quantum error correction and fault-tolerant quantum 

computation [8]. This simulator does not and cannot account for density matrices and operates 

purely on quantum states, limiting some of the functions and algorithms that can be executed. 

 

 

IV. Demonstrations and Applications 

Demonstration 1: Quantum Teleportation 

Quantum teleportation allows two states that share an entangled pair to transfer an arbitrary 

quantum state using only classical communication. In order to transfer a quantum state, two 

distant qubits must be connected via a classical information channel and share a maximally 

entangled state [9]. Due to the no-cloning theorem described in this section, quantum states 

cannot be copied and are hard to transport physically due to decoherence and noise.  
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Figure 1: Quantum Circuit for Quantum Teleportation 

 

The circuit for quantum teleportation is shown in Figure 1 [12]. |𝜓⟩ denotes the qubit in an 

arbitrary quantum state. In the first step, the ∣0〉 qubits in the second and third line became 

entangled into a new state by applying the Hadamard and CNOT gate on them. Subsequently, 

by performing another CNOT and Hadamard gate to their maximally entangled state, to 

complete the algorithm, there is a local measurement done on the final state of the algorithm.  

 

The resulting two classical bits are sent to a distant qubit. If the projective measurement in the 

first line outputs a 1, the receiver performs the Z gate on the received state, while if the 

measurement in the second line outputs a 1, the receiver performs the pauli-X gate on the 

received state. Finally, the information was changed into the original |𝜓⟩ state. This technique is 

also known as entanglement swapping. 

 

For this demonstration, I prepared an ensemble of qubits in the state |𝜓⟩ =  𝑅𝑋(𝜃)|0⟩ for various 

values of 𝜃 ∈  [0, 2π], defined in the function prep_state_angle(theta). I replicated the algorithm 

described in Figure 1 on QPy to compare the expected and observed outcomes. The expected 

ratio is modelled by the equation: 

1 − cos (𝜃)

2
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 The results of the simulated experiment are shown in Figure 2.  

Figure 2: Observed (blue) and expected (orange) fractional |1⟩ populations of measurements which result in |𝜓⟩ → |1⟩ for the 

quantum teleportation simulation. 

 

No-Cloning Theorem  

An important difference to classical information processing can be found in this theorem as it is 

a fundamental principle in quantum mechanics that forbids the creation of identical copies of an 

arbitrary unknown quantum state. However, it is possible to make an imperfect copy of an 

unknown quantum state or a perfect copy of a known quantum state [10].  

 

The consequences of the no-cloning theorem are that one cannot make copies for error 

correction, so a special quantum error correction had to be found, which is explored in the 

following demonstration. Eavesdroppers cannot create copies of a transmitted quantum 

message, making quantum communication secure. 

 

 

Demonstration 2: Quantum Error Correction  

When qubits are transmitted over quantum channels, they are susceptible to a complex set of 

errors which can cause decoherence, depolarisation, or information to be lost to the 

environment. For quantum information transfer to be feasible, the information must be encoded 

in an error-resistant format using any of a variety of quantum error correction models. This 
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demonstration implements Shor’s 9-qubit error correction algorithm demonstrated in Figure 3 

[13]. 

 
 

Figure 3: Quantum circuit for encoding and decoding qubits using Shor’s 9-Qubit Error Correction algorithm. 

 

This error correction model encodes a single logical qubit into the product of 9 physical qubits 

and is capable of correcting for arbitrary single-qubit errors, however, cannot correct multiple 

errors at once [11] which is demonstrated by the decoherence and erratic results in Figure 6. 

The algorithm, moreover, cannot directly reveal with qubit values were altered. E represents a 

channel that induces a single error by applying a random unitary operator.  

 

I replicated the algorithm described in Figure 3 dividing the encrypting stage of the algorithm as 

shor_encode while the decoding stage is defined under shor_decode. By deliberately inducing 

randomized unitary errors into the message after encoding, the simulator tracks the output of 

the algorithm.  

 

For this demonstration, I again prepared an ensemble of qubits in the state |𝜓⟩ =  𝑅𝑋(𝜃)|0⟩ for 

distinct values of 𝜃 ∈  [0, 2π] using the function prep_state_angle(theta). Figures 4 to 6 are plots 

that compare the expected and observed outcomes with different numbers of induced errors.  

 

The expected ratio is modelled by the same equation:  
1 − cos (𝜃)

2
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Figure 4: Observed (blue) and expected (orange) fractional |1⟩ populations of measurements which result in 

 |𝜓⟩ → |1⟩ for the quantum error correction simulation with no occurring errors. 

Figure 5: Observed (blue) and expected (orange) fractional |1⟩ populations of measurements which result in 

 |𝜓⟩ → |1⟩ for the quantum error correction simulation with only one induced error. 
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Figure 6: Observed (blue) and expected (orange) fractional |1⟩ populations of measurements which result in  

|𝜓⟩ → |1⟩ for the quantum error correction simulation with two induced errors. The information is distorted. 

 

V. Conclusion 

The framework includes modules for representing quantum information at the single-particle, 

multi-particle, and ensemble levels, and a large number of quantum gates for manipulating 

quantum information. Virtually all components of the simulator are configurable, allowing users 

to program simulations ranging from simple demonstrations to complex and detailed 

computational models. The simulator's versatility lays the groundwork for investigating quantum 

algorithms and protocols, contributing to the advancement of quantum computing research. I 

hope that the development of this project will stimulate exploration in the field of quantum 

algorithms. 
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