
Fall Detection Device Using Machine Learning on Embedded Systems
Siddarth Nandyala

Project Abstract

This project introduces an Embedded Fall Detection System using machine learning
algorithms for rapid response to protect individual safety. By employing advanced sensors like
the gyroscope and accelerometer IMU with real-time data analysis capabilities, an alarm will
sound immediately upon detection of falls by users as soon as a system alarm triggers instant
alarms for them; notifications will then be sent out by both email and notification system to
designated contacts.

At its heart lies machine learning models trained on a fall dataset, which recognize
patterns on efficient low-power embedded hardware to deliver discreet yet reliable daily life
integration. When falls occur, immediate alarms provide user feedback, while email and
notification alerts provide essential details that enable swift assistance from emergency services
or caregivers.

This project pioneers assistive technology by embedding intelligent fall detection using
machine learning on low-power systems. This technology can increase accuracy and quickly
adapt to evolving situations, ensuring timely interventions to mitigate fall injuries and enhance
the safety of at-risk individuals.

Background and Related Work

Problem
Falling is the highest reason for hospitalization for older people in the United States.

According to the National Institutes of Health, around 250,000 injuries and 11,000 deaths
happen in the United States alone due to falling. During falls leading to severe injuries, receiving
immediate help and assistance is vital and can be the difference between life and death. An
estimated 9,000,000 citizens report falls annually, revealing a need for fall-detection devices
(Verma et al., 2016).

Current Solutions
Current solutions implemented include smart watches, necklaces, and more. These

traditional methods of fall detection and alerts fall under a subset of a few disadvantages.

1. Cost effectiveness is a vital factor. The cost of the item can inhibit people from having
access to innovative and potentially lifesaving devices.

2. Implementation of what the device can detect. Many devices can get falsely triggered by
walking up and down stairs. This leads to a loss of accuracy, leading to alarms being
triggered when superfluous and not being triggered when necessary. Furthermore,

1



devices such as the most common devices for this application cannot detect falls from a
bed, which is another widespread fall leading to injuries.

Methods
The solution to traditional flaws with fall detection can be an efficient microcontroller

running a neural network trained to detect falls. The solution to this would work using gyroscopic
and accelerometer data to classify the user's movement and act based on the model's
inference.

Creating Band
The band was created to house all the components and have access to connect the

Arduino to the computer to receive samples for data collection. The band also had sized
openings to house the button and buzzer for this project. Below is a visual of the design that
was 3d printed in PLA. You can download the 3D model at
https://www.printables.com/model/754533-fall-detection-module.

Hardware
The hardware for this model would have to be scalable, cost-effective, and efficient. The

hardware would also have to be compact. The Arduino Nano RP2040 Connect would be the
best choice for this project. The Arduino’s onboard IMU system can capture data for
classification and detection. The Arduino Nano RP2040 Connect also can run machine learning
and TensorFlow Lite. The ability to run TensorFlow Lite and interpret the machine learning
model allows the computation and results to have a high level of accuracy. This Arduino also
has Wi-Fi functions for connectivity with different devices. Connection to the cloud through the
Arduino can also send notifications in the case of a fall, making this Arduino Nano RP2040
Connect with the RP2040 microcontroller running the Arm Mbed OS a perfect choice.

2

https://www.printables.com/model/754533-fall-detection-module


The piezo buzzer and a push button are other components used in this project. The piezo
could buzz during fall to notify nearby individuals that assistance is required. The button can
either stop the buzzer or intercept the fall notification, stopping it from sending. This feature
could be helpful in the case of a false prediction or a fall that did not injure or hurt the individual.

Connecting the hardware proves to be a relatively easy task. The Arduino will be placed
into the housing so the connector goes outward to the designated connect port area. This next
step is to connect a micro-USB to barrel jack converter to the Arduino. Add the 9-volt battery
onto the other side of the Arduino. Lastly, we will connect the wiring to the buzzer and button.
Connect the buzzer's negative to the Arduino's ground pin and the power pin (labeled with the
plus sign) to digital pin number 2. The button should be connected to 3.3 volts and digital pin
number 3 on the Arduino Board. These components can be added to their designated spots.
The Arduino can be held in place simply using a small double-sided tape strip. The housing can
be closed by attaching Velcro straps to the lid, and an elastic band can be added through the
loop holder for the band to hold onto the arm of the user. The build should look something like
the image below.

Machine Learning Tool
The device would have the neural network run using Arduino ML Tools, interfacing with

Edge Impulse. Based on TensorFlow Lite, Edge Impulse allows the Arduino to run the model
(Hymel et al., 2023).

Curating Samples for Training
The Arduino Nano RP2040 will be connected to the computer by pasting

edge-impulse-data-forwarder into the terminal (Data Forwarder, n.d.). More about the serial
forwarder can be found at
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-data-forwarder. Alternatively, you
can connect the board to the computer and paste edge-impulse-daemon into the terminal (Serial
Daemon, n.d.). More about this can be found at
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-daemon. Once this process is
done, the Arduino can collect data. The band can be worn under the shoulder, and data can be
collected. Each sample's size will be 5000 milliseconds, and the frequency will be 100Hz. The
data will be received from the gyroscope and accelerometer. The class of the data collected will

3

https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-daemon.%20


also be specified while collecting the data needed. The setup of the data should look like the
image below.

One hundred seventy-two samples were taken for the categories fall, nothing, walk, stairs
up, stairs down, stand up, sleep, and sit. While training the fall section, multiple types of falls
were trained on. Side falls, front and back falls, and bed falls. After visualizing the data from the
raw data visualization, almost identical data was seen for all of them, and they were all placed in
a single category. This would make the model smaller and more accurate in the real world. The
visualization of the data should look like the image below.

4



Creating Impulse
The next step of this project is to create an impulse. The impulse takes the raw data

feature, extracts it, and classifies it. The data was taken over a series of times, making us use
the Time Series Data block with a window size of 2000ms and window increase of 200ms. Due
to the data samples being at 100Hz, the frequency will be the same. The data will also be
zero-padded. The next block will be Spectral Analysis because this will allow us to tailor the
impulse for accelerometer and gyroscopic data. The next step is to select the input axes we
want to use. We will use AccX, AccY, AccZ, GyrX, GyrY, and GyrZ. This will allow us to use the
accelerometer and gyroscope for making the prediction. Now, we must add the Classifier block.
This will enable us to classify the data. We will use the Spectral Features as our input, with eight
output features. The impulse should look like the image below.

5



Viewing Data
The data can be visualized in the Spectral Features tab. This will allow us to view the

data for the features and apply filters to the data. We can adjust the parameters in the data to
app filters and more. The Scale Axes and the Input Decimation Ratio will be set to 1. The type
specifies the type of filter we want to use. We will not be using a filter. Moving on to the analysis
of the parameters, the Type can be set to FFT, and the FFT Length will be set to 16. We will
want to take the log of the spectrum and overlap FFT Frames, so we need to check those
boxes. The image below should show what the Spectral Features tab and the parameters
should look like.

After we save the parameters, the screen will move to the Generate Features tab. Select
Calculate Feature Importance to view the features' importance for each prediction. Now, you
must select Generate Features to start the process. The image below documents how the
screen should look after generating the features.

6



Building the Neural Network
We must navigate to the Classifier tab to adjust the neural network settings. We will

adjust the number of epochs or the number of training cycles to 500. This will make the classifier
run the training data 500 times through it to train the model. Next, set the learning rate of the
model to 0.005. We should now adjust the dense layers of the network. This will allow the model
to adjust the weights by the set learning rate and continue to adjust until we reach convergence.
Select Add an Extra Layer and then select the Dense Layer option. The first and second layers
should consist of 20 neurons each. The third layer should consist of 10 neurons. The Starting
Training button can be clicked, and the process will start. This could take some time as the
model is trained. The result should look something like the image below. The accuracies may
vary as the data is not the same. If you want to recreate the exact values, you can get the data
set at https://mltools.arduino.cc/public/330362/live.

After finishing the training process, we can see our results. Our overall accuracy is
89.7%, and the accuracy for detecting falls is 96.1%! This allows us to accurately classify
whether the user has had a fall or not.

Deployment
The next step is to deploy the model onto the Arduino. The Edge Impulse model can be

cloned at https://mltools.arduino.cc/public/330362/live. Navigate to the Deployment tab. There,

7

https://mltools.arduino.cc/public/330362/live%20
https://mltools.arduino.cc/public/330362/live


you can select your deployment method to be the Arduino library. This will create a library you
can add to your Arduino IDE to interface with the model. We will enable the EON Compiler as it
can help lower the model's size. Now you can click build model. It should look something like
the image below.

A file now will download, which contains the library holding the model. Now, we will
deploy the model onto the device through the cloud. Navigate to the Arduino cloud:
https://app.arduino.cc/. The Arduino Maker Plan for the cloud must be purchased for the
notification triggers.

Click on the Things tab and add a thing (indicated with + Thing) to connect and code the
device. Now, click on the linking icon, which says, Select Device. Now, you must download
Arduino Create Agent and follow the steps to connect the board to your computer. The board
should be plugged into the computer, and it should detect it and allow you to connect. Now click
on the linking icon that says, Configure. Selecting this will enable you to connect the board to
Wi-Fi to send the SMS notifications. The Wi-Fi can be set to the person’s phone’s hotspot if they
disconnect from their home Wi-Fi. Now, you will create the cloud variable. This variable will
change the send notifications when the fall is detected. Select the Add button to create the
variable. It would be best to name the variable trigger and set the variable type. To do this,
select Basic Variable and then Boolean from the drop-down menu once you try to choose the
variable type. Still inside the Thing section, move to the next tab, the sketch. Click Open Full
Editor at the top of the screen. This will take you to the main editor with more functionality
available. Click on the Import button at the top left of the screen and upload the zip file
containing the model. This will download the library with the model onto the code. The C++ code
can be found at https://github.com/siddarthnandy/FallDetection. This code can be copied and
pasted into the main editor. This code will run the interpretation of the model’s prediction, send

8

https://app.arduino.cc/
https://github.com/siddarthnandy/FallDetection


the notifications, and ring the buzzer. It will also allow the button to be pressed to intercept the
message and stop the buzzer.

The next step is to create a mechanism to send the user the notifications. Navigate to the
homepage of the Arduino Cloud. From here, navigate to the Triggers tab. This is where we will
set up what the cloud will do when the state of the trigger during the event that falls is detected.
Select Create Trigger and Cloud Variable, then the sketch and the cloud variable you made
inside it. Now click Link Variable. Click on the Send Email and the Send Push Notification
options. This states what function the cloud must perform when the trigger variable is too high
when a fall is detected. Type what you want to send in the email and push a notification when
the system has detected the fall. Now select the Done button at the bottom of the screen. The
system setup should look something like the image below.

The email will be sent to the email address that your Arduino Account is linked to. The
Arduino IOT Remote must be downloaded on both the armband recipient and the person who
can help them and come to assist during a fall. Both devices should be logged onto the same
account in the app that the Arduino Cloud was logged into. This will send the notifications to the
devices. Now navigate back to the home page and then the Triggers page and set the state of
the trigger to be on.

9



Now that the steps for deployment have been completed, we can look at how the code
functions. The code is a fusion between the code Edge Impulse provides for the fusion model
for the Arduino Nano RP2040 and the code we provide when creating a Thing in Arduino. The
code that has been modified are the functions and the conditional blocks that decide what will
happen when the fall has been detected. The standalone Edge Impulse code only provides the
running of the model's inference and printing it to the Serial Monitor. The code taken from the
Arduino is only the other files that we did not edit, which contain the cloud variable and the
username and password to the Wi-Fi network that the Arduino has been connected to.

The first edit has been made to the print_inference_result function. We will change it to a
boolean function, returning the value of the fell variable as either true or false. This edit allows
the function to return the actual value if the inference prediction was a fall.

This is a snippet picture of the changed part of the code.

The next edit made to the program was the if statements that automate sending the
trigger for notification and the buzzer. Now, we will create a statement that will save the number
of times the button has been pressed to know whether the user did not have a fatal fall or injury

10



and if immediate help is needed. The next step is to create a statement that will send a trigger
for the notification, turn on the buzzer, and update the Arduino cloud to send the notification
instantly. A snippet picture of the edited code has been provided below.

The only other changes to the code were defining and redefining the new variables and
updating the Arduino Cloud every time the code ran. Through these changes, the code can be
modified to work in detected falls, turning on the buzzer, detecting if the button has been
pressed, indicating that the user is exemplary, and sending emails and notifications during the
event where the fall has been detected. No action was taken from the user to intercept the call
for help.

Location Tracking
The last step is to track the recipient's location using their phone in case of a fall.

Opening the Arduino IOT Remote on the recipient’s device, select the Try Phone as Device
button. Allow the app to track data from the phone and click Set Your Phone. This will
automatically build the connections and variables for the phone’s sensors and create widgets for
you to view the recipient's data remotely, including the location. Now select Try Out to activate.

11



Results and Testing
The device we tested proved to be very accurate in detecting falls. During the training

step, we achieved a 96.1% accuracy in detecting falls. The device correctly detected 98 out of
102 falls during this training process! After live testing, the fall detection band could classify all
ten falls correctly. When we tested the device for falling from a bed, it correctly classified all ten
tests. This test helped us understand the accuracy of our model. Compared to competitors such
as the Apple Watch lineup, which could not correctly classify falls out of eleven, the fall detection
band is a better option (Should You Use Apple Watch for Fall Detection in 2023?, n.d.).

Conclusion
Through these steps, an accurate fall detection system can be achieved. Alerts and

signals can be sent during the event of a fall, saving people all around the globe. This innovation
can help to seek urgent assistance and is a crucial step in shaping a bright future for this
overlooked danger in citizens worldwide. Through this invention, people can have peace of mind
knowing the systems engaged.

Through the power of technology and artificial intelligence, problems such as this can be
solved. With constant development in the technological field, many challenges can be found
solutions. With breakthroughs in the machine learning space on embedded systems, new doors
can be opened to change and shape the world for the better.

12



Bibliography

[1] Data forwarder. (n.d.). Retrieved January 31, 2024, from

https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-data-forwarder

[2] Hymel, S., Banbury, C., Situnayake, D., Elium, A., Ward, C., Kelcey, M., Baaijens, M.,

Majchrzycki, M., Plunkett, J., Tischler, D., Grande, A., Moreau, L., Maslov, D., Beavis, A.,

Jongboom, J., & Reddi, V. J. (2023). Edge Impulse: An MLOps Platform for Tiny Machine

Learning.

[3] Serial daemon. (n.d.). Retrieved January 31, 2024, from

https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-daemonh

[4] Should You Use Apple Watch for Fall Detection in 2023? Experts Weigh In. (n.d.).

NCOA Adviser. Retrieved February 10, 2024, from

https://www.ncoa.org/adviser/medical-alert-systems/apple-watch-medical-alert-review/

[5] Verma, S. K., Willetts, J. L., Corns, H. L., Marucci-Wellman, H. R., Lombardi, D. A., &

Courtney, T. K. (2016). Falls and Fall-Related Injuries among Community-Dwelling Adults in the

United States. PLOS ONE, 11(3), e0150939. https://doi.org/10.1371/journal.pone.0150939

13


